Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Apr;27(4 Pt 1):372-8.
doi: 10.1203/00006450-199004000-00010.

Changes in the pulmonary circulation during birth-related events

Affiliations

Changes in the pulmonary circulation during birth-related events

D F Teitel et al. Pediatr Res. 1990 Apr.

Abstract

At birth, pulmonary vascular resistance decreases dramatically, allowing pulmonary blood flow to increase and oxygen exchange to occur in the lungs. To determine the extent to which ventilation of the fetus's lungs, oxygenation of the lungs, and umbilical cord occlusion can account for this decrease in resistance, we studied 16 chronically instrumented, near-term sheep fetuses in utero. We performed the experiment in a sequential fashion: we first studied the effects of ventilation alone (without oxygenation) on pulmonary vascular resistance and blood flow, and then determined the additive effects of oxygenation and cord occlusion. We calculated pulmonary vascular resistance from measurements of vascular pressures and measurements of pulmonary blood flow obtained by injecting radionuclide-labeled microspheres. We found that ventilation alone caused a large but variable increase in pulmonary blood flow, to 401% of control, no change in pulmonary arterial pressure, and a doubling of left atrial pressure. Thus, pulmonary vascular resistance fell dramatically, to 34% of control. Oxygenation caused a modest further increase in pulmonary blood flow and a decrease in mean pulmonary arterial pressure, so resistance fell to 10% of control. Umbilical cord occlusion caused no further changes in pressure, flow, or resistance. Unexpectedly, the fetuses' pulmonary blood flow responses to ventilation fell into two groups: the mean increase was maximal in eight of the 16 fetuses but was only 20% of the cumulative increase in the other eight. We found no differences between the two groups of fetuses to explain their different responses.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types