The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones
- PMID: 23429
- PMCID: PMC1353741
- DOI: 10.1113/jphysiol.1977.sp012096
The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones
Abstract
1. Intracellular pH (pH(i)), Cl(-) and Na(+) levels were recorded in snail neurones using ion-sensitive micro-electrodes, and the mechanism of the pH(i) recovery from internal acidification investigated.2. Reducing the external HCO(3) (-) concentration greatly inhibited the rate of pH(i) recovery from HCl injection.3. Reducing external Cl(-) did not inhibit pH(i) recovery, but reducing internal Cl(-), by exposing the cell to sulphate Ringer, inhibited pH(i) recovery from CO(2) application.4. During pH(i) recovery from CO(2) application the internal Cl(-) concentration decreased. The measured fall in internal Cl(-) concentration averaged about 25% of the calculated increase in internal HCO(3) (-).5. Removal of external Na inhibited the pH(i) recovery from either CO(2) application or HCl injection.6. During the pH(i) recovery from acidification there was an increase in the internal Na(+) concentration ([Na(+)](i)). The increase was larger than that occurring when the Na pump was inhibited by K-free Ringer.7. The increase in [Na(+)](i) that occurred during pH(i) recovery from an injection of HCl was about half of that produced by a similar injection of NaCl.8. The inhibitory effects of Na-free Ringer and of the anion exchange inhibitor SITS on pH(i) recovery after HCl injection were not additive.9. It is concluded that the pH(i) regulating system involves tightly linked Cl(-)-HCO(3) (-) and Na(+)-H(+) exchange, with Na entry down its concentration gradient probably providing the energy to drive the movement inwards of HCO(3) (-) and the movement outward of Cl(-) and H(+) ions.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials