Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 Dec;273(1):317-38.
doi: 10.1113/jphysiol.1977.sp012096.

The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones

The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones

R C Thomas. J Physiol. 1977 Dec.

Abstract

1. Intracellular pH (pH(i)), Cl(-) and Na(+) levels were recorded in snail neurones using ion-sensitive micro-electrodes, and the mechanism of the pH(i) recovery from internal acidification investigated.2. Reducing the external HCO(3) (-) concentration greatly inhibited the rate of pH(i) recovery from HCl injection.3. Reducing external Cl(-) did not inhibit pH(i) recovery, but reducing internal Cl(-), by exposing the cell to sulphate Ringer, inhibited pH(i) recovery from CO(2) application.4. During pH(i) recovery from CO(2) application the internal Cl(-) concentration decreased. The measured fall in internal Cl(-) concentration averaged about 25% of the calculated increase in internal HCO(3) (-).5. Removal of external Na inhibited the pH(i) recovery from either CO(2) application or HCl injection.6. During the pH(i) recovery from acidification there was an increase in the internal Na(+) concentration ([Na(+)](i)). The increase was larger than that occurring when the Na pump was inhibited by K-free Ringer.7. The increase in [Na(+)](i) that occurred during pH(i) recovery from an injection of HCl was about half of that produced by a similar injection of NaCl.8. The inhibitory effects of Na-free Ringer and of the anion exchange inhibitor SITS on pH(i) recovery after HCl injection were not additive.9. It is concluded that the pH(i) regulating system involves tightly linked Cl(-)-HCO(3) (-) and Na(+)-H(+) exchange, with Na entry down its concentration gradient probably providing the energy to drive the movement inwards of HCO(3) (-) and the movement outward of Cl(-) and H(+) ions.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Physiol. 1974 Apr;238(1):159-80 - PubMed
    1. J Physiol. 1975 Feb;245(2):20P-22P - PubMed
    1. J Physiol. 1975 Feb;245(2):22P-23P - PubMed
    1. CRC Crit Rev Clin Lab Sci. 1975 Sep;6(2):101-43 - PubMed
    1. Nature. 1976 Jan 22;259(5540):240-1 - PubMed

LinkOut - more resources