Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 May 20;20(3):R65-82.
doi: 10.1530/ERC-12-0338. Print 2013 Jun.

Neuroendocrine tumours: cracking the epigenetic code

Affiliations
Review

Neuroendocrine tumours: cracking the epigenetic code

A Karpathakis et al. Endocr Relat Cancer. .

Abstract

The field of epigenetics has evolved rapidly over recent years providing insight into the tumorigenesis of many solid and haematological malignancies. Determination of epigenetic modifications in neuroendocrine tumour (NET) development is imperative if we are to improve our understanding of the biology of this heterogenous group of tumours. Epigenetic marks such as DNA methylation at RASSF1A are frequent findings in NETs of all origins and may be associated with worse prognosis. MicroRNA signatures and histone modifications have been identified which can differentiate subtypes of NET and distinguish NET from adenocarcinoma in cases of diagnostic uncertainty. Historically, candidate gene-driven approaches have yielded limited insight into the epigenetics of NET. Recent progress has been facilitated by development of high-throughput tools including second-generation sequencing and arrays for analysis of the 'epigenome' of tumour and normal tissue, permitting unbiased approaches such as exome sequencing that identified mutations of chromatin-remodelling genes ATRX/DAXX in 44% of pancreatic NETs. Epigenetic changes are reversible and therefore represent an attractive therapeutic target; to date, clinical outcomes of epigenetic therapies in solid tumours have been disappointing; however, in vitro studies on NETs are promising and further clinical trials are required to determine utility of this class of novel agents. In this review, we perform a comprehensive evaluation of epigenetic changes found in NETs to date, including rare NETs such as phaeochromocytoma and adrenocortical tumours. We suggest priorities for future research and discuss potential clinical applications and novel therapies.

Keywords: ATRX/DAXX; Neuroendocrine; RASSF1; carcinoid; epigenetic, methylation; histone; miRNA.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources