Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 May;6(3):665-74.
doi: 10.1093/mp/sst035. Epub 2013 Feb 21.

Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms

Affiliations
Free article
Review

Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms

Meng Yuan et al. Mol Plant. 2013 May.
Free article

Abstract

The MtN3/saliva/SWEET-type genes, existing either alone or in a family group, are found in diverse organisms, from monocellular protozoa to higher eukaryotes, indicating their importance in cellular organisms. These genes encode polytopic membrane proteins that feature an MtN3/saliva domain, also known as a PQ loop repeat. The rice MtN3/saliva/SWEET gene family consists of 21 members and is among the largest families in sequenced organisms. Accumulating data suggest that these genes are involved in multiple physiological processes, including reproductive development, senescence, environmental adaptation, and host-pathogen interaction, in different species. In rice, some members of the family, including Xa13/Os8N3/OsSWEET11, which is essential for reproductive development, are used by the pathogenic bacterium Xanthomonas oryzae pv. oryzae to invade its host. Emerging data have also revealed that at least some MtN3/saliva/SWEET-type proteins may regulate different physiological processes by facilitating ion transport via interaction with ion transporters or as sugar transporters. The accumulating knowledge about MtN3/saliva/SWEET-type genes will help to elucidate the molecular bases of their function in different organisms.

Keywords: MtN3/saliva; PQ loop repeat; SWEET; membrane protein; transporter.

PubMed Disclaimer

Publication types