Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Sep;58(9):1474-81.
doi: 10.4187/respcare.02060. Epub 2013 Feb 19.

A bench study of 2 ventilator circuits during helmet noninvasive ventilation

Affiliations

A bench study of 2 ventilator circuits during helmet noninvasive ventilation

Giuliano Ferrone et al. Respir Care. 2013 Sep.

Abstract

Objective: To compare helmet noninvasive ventilation (NIV), in terms of patient-ventilator interaction and performance, using 2 different circuits for connection: a double tube circuit (with one inspiratory and one expiratory line) and a standard circuit (a Y-piece connected only to one side of the helmet, closing the other side).

Methods: A manikin, connected to a test lung set at 2 breathing frequencies (20 and 30 breaths/min), was ventilated in pressure support ventilation (PSV) mode with 2 different settings, randomly applied, of the ratio of pressurization time to expiratory trigger time (T(press)/T(exp-trigger)) 50%/25%, default setting, and T(press)/T(exp-trigger) 80%/60%, fast setting, through a helmet. The helmet was connected to the ventilator randomly with the double and the standard circuit. We measured inspiratory trigger delay (T(insp-delay)), expiratory trigger delay (T(exp-delay)), T(press)), time of synchrony (T(synch)), trigger pressure drop, inspiratory pressure-time product (PTP), PTP at 300 ms and 500 ms, and PTP at 500 ms expressed as percentage of an ideal PTP500 (PTP500 index).

Results: At both breathing frequencies and ventilator settings, helmet NIV with the double tube circuit showed better patient-ventilator interaction, with shorter T(insp-delay), T(exp-delay), and T(press); longer T(synch); and higher PTP300, PTP500, and PTP500 index (all P < .01).

Conclusions: The double tube circuit had significantly better patient-ventilator interaction and a lower rate of wasted effort at 30 breaths/min.

Keywords: helmet; noninvasive ventilation; patient-ventilator interaction; ventilator circuit.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources