Nanowire-based electrode for acute in vivo neural recordings in the brain
- PMID: 23431387
- PMCID: PMC3576334
- DOI: 10.1371/journal.pone.0056673
Nanowire-based electrode for acute in vivo neural recordings in the brain
Abstract
We present an electrode, based on structurally controlled nanowires, as a first step towards developing a useful nanostructured device for neurophysiological measurements in vivo. The sensing part of the electrode is made of a metal film deposited on top of an array of epitaxially grown gallium phosphide nanowires. We achieved the first functional testing of the nanowire-based electrode by performing acute in vivo recordings in the rat cerebral cortex and withstanding multiple brain implantations. Due to the controllable geometry of the nanowires, this type of electrode can be used as a model system for further analysis of the functional properties of nanostructured neuronal interfaces in vivo.
Conflict of interest statement
Figures






Similar articles
-
Morphology of living cells cultured on nanowire arrays with varying nanowire densities and diameters.Sci China Life Sci. 2018 Apr;61(4):427-435. doi: 10.1007/s11427-017-9264-2. Epub 2018 Apr 2. Sci China Life Sci. 2018. PMID: 29656338
-
Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing.J Neural Eng. 2012 Apr;9(2):026028. doi: 10.1088/1741-2560/9/2/026028. Epub 2012 Mar 23. J Neural Eng. 2012. PMID: 22442134
-
Impact of degradable nanowires on long-term brain tissue responses.J Nanobiotechnology. 2016 Aug 9;14(1):64. doi: 10.1186/s12951-016-0216-7. J Nanobiotechnology. 2016. PMID: 27507159 Free PMC article.
-
Soft tissue reactions evoked by implanted gallium phosphide.Biomaterials. 2008 Dec;29(35):4598-604. doi: 10.1016/j.biomaterials.2008.08.028. Epub 2008 Sep 17. Biomaterials. 2008. PMID: 18801568
-
Cuff and sieve electrode (CASE): The combination of neural electrodes for bi-directional peripheral nerve interfacing.J Neurosci Methods. 2020 Apr 15;336:108602. doi: 10.1016/j.jneumeth.2020.108602. Epub 2020 Jan 22. J Neurosci Methods. 2020. PMID: 31981569 Review.
Cited by
-
Advances in Nano Neuroscience: From Nanomaterials to Nanotools.Front Neurosci. 2019 Jan 15;12:953. doi: 10.3389/fnins.2018.00953. eCollection 2018. Front Neurosci. 2019. PMID: 30697140 Free PMC article. Review.
-
Leveraging the interplay of nanotechnology and neuroscience: Designing new avenues for treating central nervous system disorders.Adv Drug Deliv Rev. 2019 Aug;148:181-203. doi: 10.1016/j.addr.2019.02.009. Epub 2019 Mar 4. Adv Drug Deliv Rev. 2019. PMID: 30844410 Free PMC article. Review.
-
Neurobiochemical changes in the vicinity of a nanostructured neural implant.Sci Rep. 2016 Oct 24;6:35944. doi: 10.1038/srep35944. Sci Rep. 2016. PMID: 27775024 Free PMC article.
-
Thinking Ahead on Deep Brain Stimulation: An Analysis of the Ethical Implications of a Developing Technology.AJOB Neurosci. 2014 Jan;5(1):24-33. doi: 10.1080/21507740.2013.863243. AJOB Neurosci. 2014. PMID: 24587963 Free PMC article.
-
Electromagnetic limits to radiofrequency (RF) neuronal telemetry.Sci Rep. 2013 Dec 18;3:3535. doi: 10.1038/srep03535. Sci Rep. 2013. PMID: 24346503 Free PMC article.
References
-
- Cogan SF (2008) Neural stimulation and recording electrodes. Annu Rev Biomed Eng 10: 275–309. - PubMed
-
- Fromherz P (2003) Neuroelectronic Interfacing: Semiconductor Chips with Ion Channels, Nerve Cells, and Brain. In: Waser R, editor. Nanoelectronics and Information Technology. Berlin: Wiley-VCH. 781–810.
-
- Rutten WLC (2002) Selective electrical interfaces with the nervous system. Annu Rev Biomed Eng 4: 407–452. - PubMed
-
- Benabid AL (2007) What the future holds for deep brain stimulation. Expert Rev Med Devices 4: 895–903. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources