Effects of the Pimelic Diphenylamide Histone Deacetylase Inhibitor HDACi 4b on the R6/2 and N171-82Q Mouse Models of Huntington's Disease
- PMID: 23437422
- PMCID: PMC3574864
- DOI: 10.1371/currents.hd.ec3547da1c2a520ba959ee7bf8bdd202
Effects of the Pimelic Diphenylamide Histone Deacetylase Inhibitor HDACi 4b on the R6/2 and N171-82Q Mouse Models of Huntington's Disease
Erratum in
-
Correction: Effects of the Pimelic Diphenylamide Histone Deacetylase Inhibitor HDACi 4b on the R6/2 and N171-82Q Mouse Models of Huntington's Disease.PLoS Curr. 2017 Jul 11;9:ecurrents.hd.976177e0cbf724437ea11745c9231a57. doi: 10.1371/currents.hd.976177e0cbf724437ea11745c9231a57. PLoS Curr. 2017. PMID: 28856062 Free PMC article.
Abstract
This report represents a detailed description of experiments designed to replicate and extend the findings of a published study on the effects of treating the R6/2 Huntington's disease (HD) mouse model with ~300 CAG repeats using the pimelic diphenylamide histone deacetylase (HDAC) inhibitor, HDACi 4b (Thomas et al., 2008). In addition to testing the R6/2 mice, similar experiments examined the effects of the drug on a second transgenic HD mouse model, the N171-82Q mice. As in the original study, the drug was delivered in the drinking water. In the present study we tested larger groups of mice than in the original study. The results indicated that we were unable to replicate the significant behavioral effects of oral HDACi 4b treatment in the R6/2 mice. There were however, non-significant trends for the treated R6/2 mice to be less affected on some of the measures and there were instances of phenotype progression being delayed in these treated mice. In contrast, we did replicate the protection from striatal atrophy in the R6/2 mice. We also did not observe any beneficial effects of HDACi 4b treatment in the N171-82Q mice. Although the behavioral procedures were replicated and an automated activity assessment was added, there were several unexpected complications in terms of solubility of the drug, CAG repeat length differences and gender differences in progression of the phenotype that could have affected outcomes. Clearly more studies will have to be performed using other methods of delivery as well as assessing effects in more slowly progressing HD models to better evaluate the effects of this HDAC inhibitor.
Figures














References
-
- Thomas EA, Coppola G, Desplats PA, Tang B, Soragni E, Burnett R, Gao F, Fitzgerald KM, Borok JF, Herman D, Geschwind DH, Gottesfeld JM. The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington's disease transgenic mice. Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15564-9. PubMed PMID:18829438. - PMC - PubMed
-
- Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 1996 Nov 1;87(3):493-506. PubMed PMID:8898202. - PubMed
-
- Morton AJ, Glynn D, Leavens W, Zheng Z, Faull RL, Skepper JN, Wight JM. Paradoxical delay in the onset of disease caused by super-long CAG repeat expansions in R6/2 mice. Neurobiol Dis. 2009 Mar;33(3):331-41. PubMed PMID:19130884. - PubMed
-
- Cummings DM, Alaghband Y, Hickey MA, Joshi PR, Hong SC, Zhu C, Ando TK, André VM, Cepeda C, Watson JB, Levine MS. A critical window of CAG repeat-length correlates with phenotype severity in the R6/2 mouse model of Huntington's disease. J Neurophysiol. 2012 Jan;107(2):677-91. PubMed PMID:22072510. - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources