Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2013 Feb;38(2):140-7.
doi: 10.1139/apnm-2012-0201. Epub 2012 Nov 9.

Caffeine ingestion impairs insulin sensitivity in a dose-dependent manner in both men and women

Affiliations
Randomized Controlled Trial

Caffeine ingestion impairs insulin sensitivity in a dose-dependent manner in both men and women

Marie-Soleil Beaudoin et al. Appl Physiol Nutr Metab. 2013 Feb.

Abstract

The effects of alkaloid caffeine on insulin sensitivity have been investigated primarily in men, and with a single caffeine dose most commonly of 5-6 mg·kg(-1) of body weight (BW). It is unknown if the effects of caffeine on glucose homeostasis are sex-specific and (or) dose-dependent. This study examined whether caffeine ingestion would disrupt glucose homeostasis in a dose-dependent or threshold manner. It also examined whether sex-specific responses to caffeine exist. It was hypothesized that women would have an exaggerated response to caffeine, and that caffeine would only impair glucose metabolism once a threshold was reached. Twenty-four healthy volunteers (12 males, 12 females) participated in 4 trials, in a crossover, randomized, and double-blind fashion. They ingested caffeine (1, 3, or 5 mg·kg(-1) of BW) or placebo followed, 1 h later, by a 2-h oral glucose tolerance test. Glucose, insulin, C-peptide area under the curve (AUC), and insulin sensitivity index data were fitted to a segmented linear model to determine dose-responses. There were no differences between sexes for any endpoints. Regression slopes were significantly different from zero (p < 0.05) for glucose, insulin, and C-peptide AUCs, with thresholds being no different from zero. Increasing caffeine consumption by 1 mg·kg(-1) of BW increased insulin and C-peptide AUCs by 5.8% and 8.7%, respectively. Despite this exaggerated insulin response, glucose AUC increased by 11.2 mmol per 120 min·L(-1) for each mg·kg(-1) BW consumed. These results showed that caffeine ingestion disrupted insulin sensitivity in a dose-dependent fashion beginning at very low doses (0-1 mg·kg(-1) BW) in both healthy men and women.

PubMed Disclaimer

Publication types

LinkOut - more resources