Modeling the flexural rigidity of rod photoreceptors
- PMID: 23442852
- PMCID: PMC3552261
- DOI: 10.1016/j.bpj.2012.11.3835
Modeling the flexural rigidity of rod photoreceptors
Abstract
In vertebrate eyes, the rod photoreceptor has a modified cilium with an extended cylindrical structure specialized for phototransduction called the outer segment (OS). The OS has numerous stacked membrane disks and can bend or break when subjected to mechanical forces. The OS exhibits axial structural variation, with extended bands composed of a few hundred membrane disks whose thickness is diurnally modulated. Using high-resolution confocal microscopy, we have observed OS flexing and disruption in live transgenic Xenopus rods. Based on the experimental observations, we introduce a coarse-grained model of OS mechanical rigidity using elasticity theory, representing the axial OS banding explicitly via a spring-bead model. We calculate a bending stiffness of ∼10(5) nN⋅μm2, which is seven orders-of-magnitude larger than that of typical cilia and flagella. This bending stiffness has a quadratic relation to OS radius, so that thinner OS have lower fragility. Furthermore, we find that increasing the spatial frequency of axial OS banding decreases OS rigidity, reducing its fragility. Moreover, the model predicts a tendency for OS to break in bands with higher spring number density, analogous to the experimental observation that transgenic rods tended to break preferentially in bands of high fluorescence. We discuss how pathological alterations of disk membrane properties by mutant proteins may lead to increased OS rigidity and thus increased breakage, ultimately contributing to retinal degeneration.
Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Figures









Comment in
-
Will the rod bend or break? Analyzing the structural resilience of cellular organelles.Biophys J. 2013 Jan 22;104(2):284-5. doi: 10.1016/j.bpj.2012.12.023. Biophys J. 2013. PMID: 23442849 Free PMC article. No abstract available.
Similar articles
-
Calcium flares and compartmentalization in rod photoreceptors.Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21701-21710. doi: 10.1073/pnas.2004909117. Epub 2020 Aug 19. Proc Natl Acad Sci U S A. 2020. PMID: 32817426 Free PMC article.
-
Multistep peripherin-2/rds self-assembly drives membrane curvature for outer segment disk architecture and photoreceptor viability.Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4400-4410. doi: 10.1073/pnas.1912513117. Epub 2020 Feb 10. Proc Natl Acad Sci U S A. 2020. PMID: 32041874 Free PMC article.
-
The GAFa domain of phosphodiesterase-6 contains a rod outer segment localization signal.J Neurochem. 2014 Apr;129(2):256-63. doi: 10.1111/jnc.12501. Epub 2013 Nov 20. J Neurochem. 2014. PMID: 24147783 Free PMC article.
-
Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.Adv Exp Med Biol. 2002;514:179-203. doi: 10.1007/978-1-4615-0121-3_11. Adv Exp Med Biol. 2002. PMID: 12596922 Review.
-
Prominin-1 and Photoreceptor Cadherin Localization in Xenopus laevis: Protein-Protein Relationships and Function.Adv Exp Med Biol. 2019;1185:483-487. doi: 10.1007/978-3-030-27378-1_79. Adv Exp Med Biol. 2019. PMID: 31884658 Review.
Cited by
-
An inducible expression system to measure rhodopsin transport in transgenic Xenopus rod outer segments.PLoS One. 2013 Dec 6;8(12):e82629. doi: 10.1371/journal.pone.0082629. eCollection 2013. PLoS One. 2013. PMID: 24349323 Free PMC article.
-
Regulation of rhodopsin-eGFP distribution in transgenic xenopus rod outer segments by light.PLoS One. 2013 Nov 15;8(11):e80059. doi: 10.1371/journal.pone.0080059. eCollection 2013. PLoS One. 2013. PMID: 24260336 Free PMC article.
-
Will the rod bend or break? Analyzing the structural resilience of cellular organelles.Biophys J. 2013 Jan 22;104(2):284-5. doi: 10.1016/j.bpj.2012.12.023. Biophys J. 2013. PMID: 23442849 Free PMC article. No abstract available.
-
Retinal tissue preparation for high-resolution live imaging of photoreceptors expressing multiple transgenes.MethodsX. 2018 Mar 16;5:1140-1147. doi: 10.1016/j.mex.2018.03.001. eCollection 2018. MethodsX. 2018. PMID: 30302320 Free PMC article.
-
Light regulation of rhodopsin distribution during outer segment renewal in murine rod photoreceptors.Curr Biol. 2024 Apr 8;34(7):1492-1505.e6. doi: 10.1016/j.cub.2024.02.070. Epub 2024 Mar 19. Curr Biol. 2024. PMID: 38508186 Free PMC article.
References
-
- Dowling J.E. Belknap Press/Harvard University Press; Cambridge, MA: 1987. The Retina: An Approachable Part of the Brain. 12–42.
-
- Pugh E.N., Jr., Lamb T.D. Phototransduction in vertebrate rods and cones: molecular mechanisms of amplification, recovery and light adaptation. In: Stavenga D.G., de Grip W.J., Pugh E.N. Jr., editors. Handbook of Biological Physics. Elsevier; Amsterdam: 2000. pp. 183–254.
-
- Papermaster D.S., Dreyer W.J. Rhodopsin content in the outer segment membranes of bovine and frog retinal rods. Biochemistry. 1974;13:2438–2444. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources