Biophysical model of ion transport across human respiratory epithelia allows quantification of ion permeabilities
- PMID: 23442922
- PMCID: PMC3566454
- DOI: 10.1016/j.bpj.2012.12.040
Biophysical model of ion transport across human respiratory epithelia allows quantification of ion permeabilities
Erratum in
- Biophys J. 2014 Apr 1;106(7):1548
Abstract
Lung health and normal mucus clearance depend on adequate hydration of airway surfaces. Because transepithelial osmotic gradients drive water flows, sufficient hydration of the airway surface liquid depends on a balance between ion secretion and absorption by respiratory epithelia. In vitro experiments using cultures of primary human nasal epithelia and human bronchial epithelia have established many of the biophysical processes involved in airway surface liquid homeostasis. Most experimental studies, however, have focused on the apical membrane, despite the fact that ion transport across respiratory epithelia involves both cellular and paracellular pathways. In fact, the ion permeabilities of the basolateral membrane and paracellular pathway remain largely unknown. Here we use a biophysical model for water and ion transport to quantify ion permeabilities of all pathways (apical, basolateral, paracellular) in human nasal epithelia cultures using experimental (Ussing Chamber and microelectrode) data reported in the literature. We derive analytical formulas for the steady-state short-circuit current and membrane potential, which are for polarized epithelia the equivalent of the Goldman-Hodgkin-Katz equation for single isolated cells. These relations allow parameter estimation to be performed efficiently. By providing a method to quantify all the ion permeabilities of respiratory epithelia, the model may aid us in understanding the physiology that regulates normal airway surface hydration.
Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Figures



Similar articles
-
Ion transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro.Hear Res. 1995 Apr;84(1-2):19-29. doi: 10.1016/0378-5955(95)00009-s. Hear Res. 1995. PMID: 7642451
-
Evidence for reduced Cl- and increased Na+ permeability in cystic fibrosis human primary cell cultures.J Physiol. 1988 Nov;405:77-103. doi: 10.1113/jphysiol.1988.sp017322. J Physiol. 1988. PMID: 3255805 Free PMC article.
-
Cordyceps militaris extract stimulates Cl(-) secretion across human bronchial epithelia by both Ca(2+)(-) and cAMP-dependent pathways.J Ethnopharmacol. 2011 Oct 31;138(1):201-11. doi: 10.1016/j.jep.2011.08.081. Epub 2011 Sep 12. J Ethnopharmacol. 2011. PMID: 21939749
-
Transepithelial ion transport across duct cells of the salivary gland.Oral Dis. 2015 Oct;21(7):826-35. doi: 10.1111/odi.12201. Epub 2013 Nov 25. Oral Dis. 2015. PMID: 24164806 Review.
-
Ion-secreting epithelia: chloride cells in the head region of Fundulus heteroclitus.Am J Physiol. 1980 Mar;238(3):R185-98. doi: 10.1152/ajpregu.1980.238.3.R185. Am J Physiol. 1980. PMID: 6245591 Review.
Cited by
-
Increased apical Na+ permeability in cystic fibrosis is supported by a quantitative model of epithelial ion transport.J Physiol. 2013 Aug 1;591(15):3681-92. doi: 10.1113/jphysiol.2013.253955. Epub 2013 Jun 3. J Physiol. 2013. PMID: 23732645 Free PMC article.
-
A spatial model of fluid recycling in the airways of the lung.J Theor Biol. 2015 Oct 7;382:198-215. doi: 10.1016/j.jtbi.2015.06.050. Epub 2015 Jul 10. J Theor Biol. 2015. PMID: 26169010 Free PMC article.
-
Methods to Measure Water Permeability.Adv Exp Med Biol. 2023;1398:343-361. doi: 10.1007/978-981-19-7415-1_24. Adv Exp Med Biol. 2023. PMID: 36717506
-
An integrated mathematical epithelial cell model for airway surface liquid regulation by mechanical forces.J Theor Biol. 2018 Feb 7;438:34-45. doi: 10.1016/j.jtbi.2017.11.010. Epub 2017 Nov 15. J Theor Biol. 2018. PMID: 29154907 Free PMC article.
-
A physiologically-motivated model of cystic fibrosis liquid and solute transport dynamics across primary human nasal epithelia.J Pharmacokinet Pharmacodyn. 2019 Oct;46(5):457-472. doi: 10.1007/s10928-019-09649-0. Epub 2019 Sep 7. J Pharmacokinet Pharmacodyn. 2019. PMID: 31494805
References
-
- Boucher R.C. Cystic fibrosis: a disease of vulnerability to airway surface dehydration. Trends Mol. Med. 2007;13:231–240. - PubMed
-
- Lew V.L., Ferreira H.G., Moura T. The behavior of transporting epithelial cells. I. Computer analysis of a basic model. Proc. R. Soc. Lond. B Biol. Sci. 1979;206:53–83. - PubMed
-
- Duszyk M., French A.S. An analytical model of ionic movements in airway epithelial cells. J. Theor. Biol. 1991;151:231–247. - PubMed
-
- Novotny J.A., Jakobsson E. Computational studies of ion-water flux coupling in the airway epithelium. I. Construction of model. Am. J. Physiol. 1996;270:C1751–C1763. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources