Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces
- PMID: 23442962
- PMCID: PMC3576530
- DOI: 10.1016/j.bpj.2012.12.046
Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces
Abstract
The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on their physical surface structure. The wings provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. We propose a biophysical model of the interactions between bacterial cells and cicada wing surface structures, and show that mechanical properties, in particular cell rigidity, are key factors in determining bacterial resistance/sensitivity to the bactericidal nature of the wing surface. We confirmed this experimentally by decreasing the rigidity of surface-resistant strains through microwave irradiation of the cells, which renders them susceptible to the wing effects. Our findings demonstrate the potential benefits of incorporating cicada wing nanopatterns into the design of antibacterial nanomaterials.
Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Figures




Similar articles
-
Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces.Appl Microbiol Biotechnol. 2013 Oct;97(20):9257-62. doi: 10.1007/s00253-012-4628-5. Epub 2012 Dec 19. Appl Microbiol Biotechnol. 2013. PMID: 23250225
-
Theoretical study on the bactericidal nature of nanopatterned surfaces.J Theor Biol. 2015 Nov 21;385:1-7. doi: 10.1016/j.jtbi.2015.08.011. Epub 2015 Sep 4. J Theor Biol. 2015. PMID: 26343860
-
Cicada Wing Surface Topography: An Investigation into the Bactericidal Properties of Nanostructural Features.ACS Appl Mater Interfaces. 2016 Jun 22;8(24):14966-74. doi: 10.1021/acsami.5b08309. Epub 2015 Nov 9. ACS Appl Mater Interfaces. 2016. PMID: 26551558
-
Bioinspired surfaces with special wettability.Acc Chem Res. 2005 Aug;38(8):644-52. doi: 10.1021/ar040224c. Acc Chem Res. 2005. PMID: 16104687 Review.
-
Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants.J Nanobiotechnology. 2017 Oct 2;15(1):64. doi: 10.1186/s12951-017-0306-1. J Nanobiotechnology. 2017. PMID: 28969628 Free PMC article. Review.
Cited by
-
Death at the interface: Nanotechnology's challenging frontier against microbial surface colonization.Front Chem. 2022 Oct 13;10:1003234. doi: 10.3389/fchem.2022.1003234. eCollection 2022. Front Chem. 2022. PMID: 36311433 Free PMC article. Review.
-
Identification of Nanopillars on the Cuticle of the Aquatic Larvae of the Drone Fly (Diptera: Syrphidae).J Insect Sci. 2016 Mar 30;16(1):36. doi: 10.1093/jisesa/iew019. Print 2016. J Insect Sci. 2016. PMID: 27030395 Free PMC article.
-
A novel protocol to prepare cell probes for the quantification of microbial adhesion and biofilm initiation on structured bioinspired surfaces using AFM for single-cell force spectroscopy: Dedicated to Prof. em. Dr. Dr. H.C. Karl Schügerl on the occasion of his 90th birthday.Eng Life Sci. 2017 Jun 7;17(8):833-840. doi: 10.1002/elsc.201700059. eCollection 2017 Aug. Eng Life Sci. 2017. PMID: 32624830 Free PMC article.
-
Impact of Silicon Carbide Coating and Nanotube Diameter on the Antibacterial Properties of Nanostructured Titanium Surfaces.Materials (Basel). 2024 Aug 2;17(15):3843. doi: 10.3390/ma17153843. Materials (Basel). 2024. PMID: 39124507 Free PMC article.
-
Interactions of Bacteria With Monolithic Lateral Silicon Nanospikes Inside a Microfluidic Channel.Front Chem. 2019 Jul 12;7:483. doi: 10.3389/fchem.2019.00483. eCollection 2019. Front Chem. 2019. PMID: 31355180 Free PMC article.
References
-
- Marmur A. The Lotus effect: superhydrophobicity and metastability. Langmuir. 2004;20:3517–3519. - PubMed
-
- Su Y., Ji B., Hwang K.C. Nature’s design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation. Langmuir. 2010;26:18926–18937. - PubMed
-
- Bhushan B., Jung Y.C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 2011;56:1–108.
-
- Guo Z., Liu W., Su B.-L. Superhydrophobic surfaces: from natural to biomimetic to functional. J. Colloid Interface Sci. 2011;353:335–355. - PubMed
-
- Webb H.K., Hasan J., Ivanova E.P. Nature inspired structured surfaces for biomedical applications. Curr. Med. Chem. 2011;18:3367–3375. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources