Alterations of the apparent area expansivity modulus of red blood cell membrane by electric fields
- PMID: 2344470
- PMCID: PMC1280788
- DOI: 10.1016/S0006-3495(90)82607-2
Alterations of the apparent area expansivity modulus of red blood cell membrane by electric fields
Abstract
Red blood cell membrane exhibits a large resistance to changes in surface area. This resistance is characterized by the area expansivity modulus K, which relates the isotropic membrane force resultant, T, to the fractional change in membrane surface area delta A/Ao. The experimental technique commonly used to determine K is micropipette aspiration. Using this method, E. A. Evans and R. Waugh (1977, Biophys. J. 20:307-313) obtained a value of 450 dyn/cm for the modulus. In the present report, it is shown that the value of K, as determined using this method, is affected by electric potential differences applied across the tip of the pipette. Using Ag-AgCl electrodes and current clamping electronics, we obtained values for K ranging from 150 dyn/cm with -1.0 V applied, to 1,500 dyn/cm with 1.0 V applied. At 0.0 V the modulus obtained was approximately 500 dyn/cm. A reversible, voltage- and pressure-dependent change in the cell volume probably accounts for the effect of the voltage on the calculated value of the modulus. The use of lanthanum chloride or increasing the extra- and intracellular solute concentrations reduced the voltage dependence of the measurements. It was also found that when dissimilar metals were used to "ground" the pipette to the chamber to prevent lysis of cells by static charge, values for K ranged from 121 to 608 dyn/cm. Based on measurements made at zero applied volts, in the presence of 0.4 mM lanthanum and at high solute concentration, we conclude that the true value of the modulus is approximately 500 dyn/cm.
Similar articles
-
Electric fields induce reversible changes in the surface to volume ratio of micropipette-aspirated erythrocytes.Biophys J. 1990 Apr;57(4):865-75. doi: 10.1016/S0006-3495(90)82606-0. Biophys J. 1990. PMID: 2344469 Free PMC article.
-
Osmotic correction to elastic area compressibility measurements on red cell membrane.Biophys J. 1977 Dec;20(3):307-13. doi: 10.1016/S0006-3495(77)85551-3. Biophys J. 1977. PMID: 922122 Free PMC article.
-
Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility.Biophys J. 1989 May;55(5):1001-9. doi: 10.1016/S0006-3495(89)82898-X. Biophys J. 1989. PMID: 2720075 Free PMC article.
-
Cell poking. Determination of the elastic area compressibility modulus of the erythrocyte membrane.Biophys J. 1984 Apr;45(4):671-82. doi: 10.1016/S0006-3495(84)84209-5. Biophys J. 1984. PMID: 6722261 Free PMC article.
-
Structure and deformation properties of red blood cells: concepts and quantitative methods.Methods Enzymol. 1989;173:3-35. doi: 10.1016/s0076-6879(89)73003-2. Methods Enzymol. 1989. PMID: 2674613 Review.
Cited by
-
Elastic deformation and failure of lipid bilayer membranes containing cholesterol.Biophys J. 1990 Oct;58(4):997-1009. doi: 10.1016/S0006-3495(90)82444-9. Biophys J. 1990. PMID: 2249000 Free PMC article.
-
Force versus axial deflection of pipette-aspirated closed membranes.Biophys J. 2007 Jul 15;93(2):363-72. doi: 10.1529/biophysj.107.104091. Epub 2007 Apr 27. Biophys J. 2007. PMID: 17468170 Free PMC article.
-
Voltage-dependent capacitance of human embryonic kidney cells.Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 1):041930. doi: 10.1103/PhysRevE.73.041930. Epub 2006 Apr 28. Phys Rev E Stat Nonlin Soft Matter Phys. 2006. PMID: 16711859 Free PMC article.
-
Kinetic and thermodynamic aspects of lipid translocation in biological membranes.Biophys J. 1999 Mar;76(3):1293-309. doi: 10.1016/S0006-3495(99)77292-9. Biophys J. 1999. PMID: 10049313 Free PMC article.
-
αI-spectrin represents evolutionary optimization of spectrin for red blood cell deformability.Biophys J. 2021 Sep 7;120(17):3588-3599. doi: 10.1016/j.bpj.2021.07.027. Epub 2021 Aug 2. Biophys J. 2021. PMID: 34352252 Free PMC article.
References
MeSH terms
LinkOut - more resources
Full Text Sources