Repeated evolution of salt-tolerance in grasses
- PMID: 23445947
- PMCID: PMC3639779
- DOI: 10.1098/rsbl.2013.0029
Repeated evolution of salt-tolerance in grasses
Abstract
The amount of salt-affected agricultural land is increasing globally, so new crop varieties are needed that can grow in salt-affected soils. Despite concerted effort to develop salt-tolerant cereal crops, few commercially viable salt-tolerant crops have been released. This is puzzling, given the number of naturally salt-tolerant grass species. To better understand why salt-tolerance occurs naturally but is difficult to breed into crop species, we take a novel, biodiversity-based approach to its study, examining the evolutionary lability of salt-tolerance across the grass family. We analyse the phylogenetic distribution of naturally salt-tolerant species on a phylogeny of 2684 grasses, and find that salt-tolerance has evolved over 70 times, in a wide range of grass lineages. These results are confirmed by repeating the analysis at genus level on a phylogeny of over 800 grass genera. While salt-tolerance evolves surprisingly often, we find that its evolution does not often give rise to a large clade of salt-tolerant species. These results suggest that salt-tolerance is an evolutionarily labile trait in grasses.
Figures

Comment in
-
Possible role of soil alkalinity in plant breeding for salt-tolerance.Biol Lett. 2013 Aug 7;9(5):20130566. doi: 10.1098/rsbl.2013.0566. Print 2013 Oct 23. Biol Lett. 2013. PMID: 23925836 Free PMC article. No abstract available.
-
Soil alkalinity and salt tolerance: adapting to multiple stresses.Biol Lett. 2013 Aug 7;9(5):20130642. doi: 10.1098/rsbl.2013.0642. Print 2013 Oct 23. Biol Lett. 2013. PMID: 23925838 Free PMC article. No abstract available.
Similar articles
-
Salt tolerance evolves more frequently in C4 grass lineages.J Evol Biol. 2014 Mar;27(3):653-9. doi: 10.1111/jeb.12320. Epub 2014 Feb 3. J Evol Biol. 2014. PMID: 24494637
-
Salt tolerance is evolutionarily labile in a diverse set of angiosperm families.BMC Evol Biol. 2015 May 19;15:90. doi: 10.1186/s12862-015-0379-0. BMC Evol Biol. 2015. PMID: 25985773 Free PMC article.
-
Predicting species' tolerance to salinity and alkalinity using distribution data and geochemical modelling: a case study using Australian grasses.Ann Bot. 2015 Feb;115(3):343-51. doi: 10.1093/aob/mcu248. Epub 2014 Dec 22. Ann Bot. 2015. PMID: 25538113 Free PMC article.
-
Macroevolutionary patterns of salt tolerance in angiosperms.Ann Bot. 2015 Feb;115(3):333-41. doi: 10.1093/aob/mcu229. Epub 2014 Nov 30. Ann Bot. 2015. PMID: 25452251 Free PMC article. Review.
-
Salt tolerance mechanisms in Salt Tolerant Grasses (STGs) and their prospects in cereal crop improvement.Bot Stud. 2014 Dec;55(1):31. doi: 10.1186/1999-3110-55-31. Epub 2014 Mar 14. Bot Stud. 2014. PMID: 28510965 Free PMC article. Review.
Cited by
-
Possible role of soil alkalinity in plant breeding for salt-tolerance.Biol Lett. 2013 Aug 7;9(5):20130566. doi: 10.1098/rsbl.2013.0566. Print 2013 Oct 23. Biol Lett. 2013. PMID: 23925836 Free PMC article. No abstract available.
-
Root Morphology and Rhizosphere Characteristics Are Related to Salt Tolerance of Suaeda salsa and Beta vulgaris L.Front Plant Sci. 2021 Jun 21;12:677767. doi: 10.3389/fpls.2021.677767. eCollection 2021. Front Plant Sci. 2021. PMID: 34234797 Free PMC article.
-
Excreting and non-excreting grasses exhibit different salt resistance strategies.AoB Plants. 2014 Jul 4;6:plu038. doi: 10.1093/aobpla/plu038. AoB Plants. 2014. PMID: 24996428 Free PMC article.
-
Exploring Jasmonates in the Hormonal Network of Drought and Salinity Responses.Front Plant Sci. 2015 Dec 1;6:1077. doi: 10.3389/fpls.2015.01077. eCollection 2015. Front Plant Sci. 2015. PMID: 26648959 Free PMC article. Review.
-
Editorial: Salinity Tolerance in Plants: Mechanisms and Regulation of Ion Transport.Front Plant Sci. 2017 Oct 24;8:1795. doi: 10.3389/fpls.2017.01795. eCollection 2017. Front Plant Sci. 2017. PMID: 29114255 Free PMC article. No abstract available.
References
-
- Godfray HCJ, et al. 2010. Food security: the challenge of feeding 9 billion people. Science 327, 812–81810.1126/science.1185383 (doi:10.1126/science.1185383) - DOI - DOI - PubMed
-
- Tester M, Langridge P. 2010. Breeding technologies to increase crop production in a changing world. Science 327, 818–82210.1126/science.1183700 (doi:10.1126/science.1183700) - DOI - DOI - PubMed
-
- Rozema J, Flowers T. 2008. Crops for a salinized world. Science 322, 1478–148010.1126/science.1168572 (doi:10.1126/science.1168572) - DOI - DOI - PubMed
-
- Flowers TJ. 2004. Improving crop salt-tolerance. J. Exp. Biol 55, 307–319 - PubMed
-
- Witcombe JR, Hollington PA, Howarth CJ, Reader S, Steele KA. 2008. Breeding for abiotic stresses for sustainable agriculture. Phil. Trans. R. Soc. B 363, 703–71610.1098/rstb.2007.2179 (doi:10.1098/rstb.2007.2179) - DOI - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources