Imaging-Based Methods for Non-invasive Assessment of Bone Properties Influenced by Mechanical Loading
- PMID: 23449969
- PMCID: PMC3321990
- DOI: 10.3138/ptc.2011-08bh
Imaging-Based Methods for Non-invasive Assessment of Bone Properties Influenced by Mechanical Loading
Abstract
Purpose: To describe the most common in vivo imaging-based research tools used to assess bone properties that are influenced by mechanical loading associated with exercise, habitual physical activity, or disease states. Bone is a complex metabolically active tissue that adapts to changes in mechanical loading by altering the amount and spatial organization of mineral.
Method: Using a narrative review design, the authors provide an overview of bone biology and biomechanics to emphasize the importance of bone size scale, porosity, and degree of mineralization when interpreting measures acquired using quantitative ultrasound (QUS), dual-energy X-ray absorptiometry (DXA), computed tomography (CT), magnetic resonance imaging (MRI), and finite element analysis (FEA). For each imaging modality, basic imaging principles, typical outcome measures associated with changes in mechanical loading, and salient features for physiotherapists are described.
Main results: While each imaging modality has strengths and limitations, currently CT-based methods are best suited for determining the effects of mechanical loading on bone properties-particularly in the peripheral skeleton.
Conclusions: Regardless of the imaging technology used, the physiotherapist must carefully consider the assumptions of the imaging-based method, the clinical context, the nature of the change in mechanical loading, and the expected time course for change in bone properties.
Purpose: To describe the most common in vivo imaging-based research tools used to assess bone properties that are influenced by mechanical loading associated with exercise, habitual physical activity, or disease states. Bone is a complex metabolically active tissue that adapts to changes in mechanical loading by altering the amount and spatial organization of mineral. Method: Using a narrative review design, the authors provide an overview of bone biology and biomechanics to emphasize the importance of bone size scale, porosity, and degree of mineralization when interpreting measures acquired using quantitative ultrasound (QUS), dual-energy X-ray absorptiometry (DXA), computed tomography (CT), magnetic resonance imaging (MRI), and finite element analysis (FEA). For each imaging modality, basic imaging principles, typical outcome measures associated with changes in mechanical loading, and salient features for physiotherapists are described. Main Results: While each imaging modality has strengths and limitations, currently CT-based methods are best suited for determining the effects of mechanical loading on bone properties—particularly in the peripheral skeleton. Conclusions: Regardless of the imaging technology used, the physiotherapist must carefully consider the assumptions of the imaging-based method, the clinical context, the nature of the change in mechanical loading, and the expected time course for change in bone properties.
RÉSUMÉ Objectif : Décrire les outils de recherche en imagerie in vivo les plus couramment utilisés pour l'évaluation des propriétés des os qui sont influencés par la charge mécanique associée à l'exercice, à l'activité physique habituelle ou aux problèmes de santé. Les os sont des tissus actifs complexes sur le plan métabolique, qui s'adaptent aux changements de la charge mécanique en modifiant la quantité et l'organisation spatiale des minéraux. Méthode : À l'aide d'un modèle de revue narrative, un aperçu de la biologie et de la biomécanique osseuse est produit en vue de mettre l'accent sur l'importance de l'échelle de la dimension des os, de la porosité et du degré de minéralisation au moment d'interpréter les mesures recueillies à l'aide d'ultrasons quantitatifs (QUS), d'absorptiométrie à rayons X biphotonique (DXA), de tomographie informatisée (CT), d'imagerie par résonance magnétique (IRM) et d'analyse par éléments finis (FEA). Pour chaque modalité d'imagerie, les principes d'imagerie de base, les mesures typiques de résultats associés aux changements de charge mécanique et les caractéristiques principales pour les physiothérapeutes ont été décrits. Principaux résultats : Bien que chaque modalité d'imagerie ait ses forces et ses limites, les méthodes à base de tomographie informatisée sont les mieux adaptées pour déterminer les effets de la charge mécanique sur les propriétés osseuses – particulièrement dans le squelette périphérique. Conclusions : Sans égard à la technologie d'imagerie utilisée, le physiothérapeute doit analyser soigneusement les hypothèses de la méthode fondée sur l'imagerie, le contexte clinique, la nature du changement de charge mécanique et le délai attendu de changement des propriétés osseuses.
Keywords: adaptation physiologique; adaptation, physiological; adult; adulte; bone and bones; charge; diagnostic imaging; imagerie médicale; os; osseux; poids; weight-bearing.
Figures





Similar articles
-
MRI-based mechanical competence assessment of bone using micro finite element analysis (micro-FEA): Review.Magn Reson Imaging. 2022 May;88:9-19. doi: 10.1016/j.mri.2022.01.009. Epub 2022 Jan 25. Magn Reson Imaging. 2022. PMID: 35091024 Free PMC article. Review.
-
Finite Element-Based Mechanical Assessment of Bone Quality on the Basis of In Vivo Images.Curr Osteoporos Rep. 2016 Dec;14(6):374-385. doi: 10.1007/s11914-016-0335-y. Curr Osteoporos Rep. 2016. PMID: 27714581 Review.
-
Bone measurements at multiple skeletal sites in adolescent idiopathic scoliosis-an in vivo correlation study using DXA, HR-pQCT and QCT.Arch Osteoporos. 2019 Jun 27;14(1):70. doi: 10.1007/s11657-019-0621-2. Arch Osteoporos. 2019. PMID: 31250235
-
Proximal Cadaveric Femur Preparation for Fracture Strength Testing and Quantitative CT-based Finite Element Analysis.J Vis Exp. 2017 Mar 11;(121):54925. doi: 10.3791/54925. J Vis Exp. 2017. PMID: 28362373 Free PMC article.
-
The prospects of estimating trabecular bone tissue properties from the combination of ultrasound, dual-energy X-ray absorptiometry, microcomputed tomography, and microfinite element analysis.J Bone Miner Res. 2001 Mar;16(3):550-5. doi: 10.1359/jbmr.2001.16.3.550. J Bone Miner Res. 2001. PMID: 11277273
Cited by
-
Bone texture characterization for osteoporosis diagnosis using digital radiography.Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1034-1037. doi: 10.1109/EMBC.2016.7590879. Annu Int Conf IEEE Eng Med Biol Soc. 2016. PMID: 28268501 Free PMC article.
-
Assessment of aging characteristics of female condylar trabecular structure by cone-beam computed tomography.Oral Radiol. 2019 Jan;35(1):16-22. doi: 10.1007/s11282-018-0322-3. Epub 2018 Mar 5. Oral Radiol. 2019. PMID: 30484182
-
The Relationship between Radial Bone Properties and Disease Activity and Physical Function in Individuals with Rheumatoid Arthritis.Physiother Can. 2012 Summer;64(3):284-91. doi: 10.3138/ptc.2011-22BH. Physiother Can. 2012. PMID: 23729965 Free PMC article.
-
Automated skeletal tissue quantification in the lower leg using peripheral quantitative computed tomography.Physiol Meas. 2018 Apr 3;39(3):035011. doi: 10.1088/1361-6579/aaafb5. Physiol Meas. 2018. PMID: 29451497 Free PMC article.
-
Ex vivo vibro-acoustography characterization of osteoporosis in an experimental mice model.Quant Imaging Med Surg. 2021 Feb;11(2):586-596. doi: 10.21037/qims-20-610. Quant Imaging Med Surg. 2021. PMID: 33532259 Free PMC article.
References
-
- Kazakia GJ, Majumdar S. New imaging technologies in the diagnosis of osteoporosis. Rev Endocr Metab Disord. 2006;7(1-2):67–74. http://dx.doi.org/10.1007/s11154-006-9004-2. Medline:17043763. - DOI - PubMed
-
- Bouxsein ML. Technology insight: noninvasive assessment of bone strength in osteoporosis. Nat Clin Pract Rheumatol. 2008;4(6):310–8. http://dx.doi.org/10.1038/ncprheum0798. Medline:18431371. - DOI - PubMed
-
- Kalpakcioglu BB, Morshed S, Engelke K, et al. Advanced imaging of bone macrostructure and microstructure in bone fragility and fracture repair. J Bone Joint Surg Am. 2008;90(Suppl 1):68–78. http://dx.doi.org/10.2106/JBJS.G.01506. Medline:18292360. - DOI - PubMed
-
- Nikander R, Sievänen H, Heinonen A, et al. Targeted exercise against osteoporosis: A systematic review and meta-analysis for optimising bone strength throughout life. BMC Med. 2010;8(1):47. http://dx.doi.org/10.1186/1741-7015-8-47. Medline:20663158. - DOI - PMC - PubMed
-
- Karinkanta S, Piirtola M, Sievänen H, et al. Physical therapy approaches to reduce fall and fracture risk among older adults. Nat Rev Endocrinol. 2010;6(7):396–407. http://dx.doi.org/10.1038/nrendo.2010.70. Medline:20517287. - DOI - PubMed
LinkOut - more resources
Full Text Sources
Medical