Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Aug 30;93(11):2841-8.
doi: 10.1002/jsfa.6118. Epub 2013 Apr 8.

Performance of wood-rotting fungi-based enzymes on enzymic saccharification of rice straw

Affiliations

Performance of wood-rotting fungi-based enzymes on enzymic saccharification of rice straw

Sho-Ichi Tsujiyama et al. J Sci Food Agric. .

Abstract

Background: For effective saccharification of rice straw we focused on enzyme preparations from wood-rotting fungi that have the ability to degrade cell wall polysaccharides and lignin. We tested extracellular enzyme preparations from 14 species of fungi for saccharification activity and examined the factor for saccharification by statistical analysis.

Results: An enzyme preparation from Schizophyllum commune had the highest saccharification activity of rice straw. This preparation contained highly active endo-β-xylanase, endo-β-glucanase (CMCase), β-d-glucosidase and acetylxylan esterase. Correlation analysis of the 14 enzyme preparations demonstrated that acetylxylan esterase was closely related to saccharification activity in rice straw. Multiple regression analysis also showed that acetylxylan esterase had an important role in saccharification. Ligninolytic enzymes, which are characteristic of white-rot fungi, did not contribute to saccharification activity of rice straw.

Conclusion: Deacetylation is an essential factor for saccharification of rice straw and enzyme preparations for saccharification need to contain highly active acetylxylan esterase as well as highly active cellulolytic and xylanolytic enzymes, but not ligninolytic ones.

Keywords: Schizophyllum commune; acetylxylan esterase; rice straw; saccharification; wood-rotting fungi.

PubMed Disclaimer

LinkOut - more resources