Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May 1:397:96-102.
doi: 10.1016/j.jcis.2013.01.041. Epub 2013 Feb 8.

A novel arsenic removal process for water using cupric oxide nanoparticles

Affiliations
Free article

A novel arsenic removal process for water using cupric oxide nanoparticles

K J Reddy et al. J Colloid Interface Sci. .
Free article

Abstract

Recent studies suggest that the cupric oxide (CuO) nanoparticles effectively adsorb aqueous arsenic species under a wide range of water chemistries. However, to develop CuO nanotechnology to a field application level, further studies are necessary. Batch adsorption kinetic experiments were conducted to determine the time course of uptake of arsenic by CuO nanoparticles. A reactor with CuO nanoparticles was developed to conduct continuous flow-through experiments to filter arsenic from groundwater samples. Groundwater samples spiked with 100 μg/L of arsenic were passed through (1L/h) the flow-through reactor. Samples from the flow-through reactor were collected at a regular interval and analyzed for arsenic and other chemical components (e.g., pH, major and trace elements). The CuO nanoparticles adsorbed with arsenic were regenerated with a sodium hydroxide (NaOH) solution and tested again in the flow-through reactor. Three natural groundwater samples with above 10 μg/L of arsenic were also tested with the flow-through reactor. The arsenic adsorption process by CuO nanoparticles was kinetically rapid and followed the pseudo-second-order rate. The continuous flow-through reactor with CuO nanoparticles was effective in filtering arsenic from spiked or natural groundwater. The regenerated CuO nanoparticles were also effective in filtering arsenic from groundwater. Arsenic mass balance data from regeneration studies suggested that 99% of input arsenic concentration was recovered. The CuO nanoparticle treatment did not show any discernible effects on the chemical quality of groundwater samples. Results of this study suggest that CuO nanoparticles show potential for developing a simple process for field applications to remove arsenic from water.

PubMed Disclaimer

LinkOut - more resources