Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Feb 28;152(5):1134-45.
doi: 10.1016/j.cell.2013.02.003.

A network of cytosolic factors targets SRP-independent proteins to the endoplasmic reticulum

Affiliations
Free article

A network of cytosolic factors targets SRP-independent proteins to the endoplasmic reticulum

Tslil Ast et al. Cell. .
Free article

Abstract

Translocation into the endoplasmic reticulum (ER) is an initial and crucial biogenesis step for all secreted and endomembrane proteins in eukaryotes. ER insertion can take place through the well-characterized signal recognition particle (SRP)-dependent pathway or the less-studied route of SRP-independent translocation. To better understand the prevalence of the SRP-independent pathway, we systematically defined the translocational dependence of the yeast secretome. By combining hydropathy-based analysis and microscopy, we uncovered that a previously unappreciated fraction of the yeast secretome translocates without the aid of the SRP. Furthermore, we validated a family of SRP-independent substrates-the glycosylphosphatidylinositol (GPI)-anchored proteins. Studying this family, we identified a determinant for ER targeting and uncovered a network of cytosolic proteins that facilitate SRP-independent targeting and translocation. These findings highlight the underappreciated complexity of SRP-independent translocation, which enables this pathway to efficiently cope with its extensive substrate flux.

PubMed Disclaimer

Publication types

MeSH terms

Substances