Functions of the DExD/H-box proteins in nuclear pre-mRNA splicing
- PMID: 23454554
- DOI: 10.1016/j.bbagrm.2013.02.006
Functions of the DExD/H-box proteins in nuclear pre-mRNA splicing
Abstract
In eukaryotes, many genes are transcribed as precursor messenger RNAs (pre-mRNAs) that contain exons and introns, the latter of which must be removed and exons ligated to form the mature mRNAs. This process is called pre-mRNA splicing, which occurs in the nucleus. Although the chemistry of pre-mRNA splicing is identical to that of the self-splicing Group II introns, hundreds of proteins and five small nuclear RNAs (snRNAs), U1, U2, U4, U5, and U6, are essential for executing pre-mRNA splicing. Spliceosome, arguably the most complex cellular machine made up of all those proteins and snRNAs, is responsible for carrying out pre-mRNA splicing. In contrast to the transcription and the translation machineries, spliceosome is formed anew onto each pre-mRNA and undergoes a series of highly coordinated reconfigurations to form the catalytic center. This amazing process is orchestrated by a number of DExD/H-proteins that are the focus of this article, which aims to review the field in general and to project the exciting challenges and opportunities ahead. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Copyright © 2013 Elsevier B.V. All rights reserved.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
