Post-breeding season migrations of a top predator, the harbor seal (Phoca vitulina richardii), from a marine protected area in Alaska
- PMID: 23457468
- PMCID: PMC3573017
- DOI: 10.1371/journal.pone.0055386
Post-breeding season migrations of a top predator, the harbor seal (Phoca vitulina richardii), from a marine protected area in Alaska
Abstract
Marine protected areas (MPAs) are increasingly being used as a conservation tool for highly mobile marine vertebrates and the focus is typically on protecting breeding areas where individuals are aggregated seasonally. Yet movements during the non-breeding season can overlap with threats that may be equally as important to population dynamics. Thus understanding habitat use and movements of species during the non-breeding periods is critical for conservation. Glacier Bay National Park, Alaska, is one of the largest marine mammal protected areas in the world and has the only enforceable protection measures for reducing disturbance to harbor seals in the United States. Yet harbor seals have declined by up to 11.5%/year from 1992 to 2009. We used satellite-linked transmitters that were attached to 37 female harbor seals to quantify the post-breeding season migrations of seals and the amount of time that seals spent inside vs. outside of the MPA of Glacier Bay. Harbor seals traveled extensively beyond the boundaries of the MPA of Glacier Bay during the post-breeding season, encompassing an area (25,325 km(2)) significantly larger than that used by seals during the breeding season (8,125 km(2)). These movements included the longest migration yet recorded for a harbor seal (3,411 km) and extended use (up to 23 days) of pelagic areas by some seals. Although the collective utilization distribution of harbor seals during the post-breeding season was quite expansive, there was a substantial degree of individual variability in the percentage of days that seals spent in the MPA. Nevertheless, harbor seals demonstrated a high degree of inter-annual site fidelity (93%) to Glacier Bay the following breeding season. Our results highlight the importance of understanding the threats that seals may interact with outside of the boundaries of the MPA of Glacier Bay for understanding population dynamics of seals in Glacier Bay.
Conflict of interest statement
Figures









References
-
- Gerber LR, Botsford LW, Hastings A, Possingham HP, Gaines SD, et al. (2003) Population models for marine reserve design: a retrospective and prospective synthesis. Ecol Appl 13: S47–S64.
-
- Lubchenco J, Palumbi SR GainesSR, Andelman SR (2003) Plugging a hole in the ocean: the merging science of marine reserves. Ecol Appl 13: 3–7.
-
- Leslie HM (2005) A synthesis of marine conservation planning approaches. Conserv Biol 19: 1701–1713.
-
- Hooker SK, Whitehead H, Gowans S (1999) Marine protected area design and the spatial and temporal distribution of cetaceans in a submarine canyon. Conserv Biol 13: 592–602.
-
- Hooker SK, Whitehead H, Gowans S (2002) Ecosystem consideration in conservation planning: energy demand of foraging bottlenose whales (Hyperoodon ampullatus) in a marine protected area. Biol Conserv 104: 51–58.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources