Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Apr;84(4):211-7.
doi: 10.1111/ans.12108. Epub 2013 Mar 4.

The osteochondral dilemma: review of current management and future trends

Affiliations
Review

The osteochondral dilemma: review of current management and future trends

Ken Ye et al. ANZ J Surg. 2014 Apr.

Abstract

The management of articular cartilage defects remains challenging and controversial. Hyaline cartilage has limited capacity for self-repair and post-injury cartilage is predominantly replaced by fibrocartilage through healing from the subchondral bone. Fibrocartilage lacks the key properties that characterize hyaline cartilage such as capacity for compression, hydrodynamic permeability and smoothness of the articular surface. Many reports relate compromised function associated with repaired cartilage and loss of function of the articular surface. Novel methods have been proposed with the key aim to regenerate hyaline cartilage for repair of osteochondral defects. Over the past decade, with many exciting developments in tissue engineering and regenerative cell-based technologies, we are now able to consider new combinatorial approaches to overcome the problems associated with osteochondral injuries and damage. In this review, the currently accepted surgical approaches are reviewed and considered; debridement, marrow stimulation, whole tissue transplantation and cellular repair. More recent products, which employ tissue engineering approaches to enhance the traditional methods of repair, are discussed. Future trends must not only focus on recreating the composition of articular cartilage, but more importantly recapitulate the nano-structure of articular cartilage to improve the functional strength and integration of repair tissue.

Keywords: bioengineering; cartilage; defects; regeneration; review.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources