Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jun;9(6):1210-9.
doi: 10.1039/c3mb25556e. Epub 2013 Mar 4.

Postnatal cardiomyocyte growth and mitochondrial reorganization cause multiple changes in the proteome of human cardiomyocytes

Affiliations

Postnatal cardiomyocyte growth and mitochondrial reorganization cause multiple changes in the proteome of human cardiomyocytes

Jaakko L O Pohjoismäki et al. Mol Biosyst. 2013 Jun.

Abstract

Fetal (fCM) and adult cardiomyocytes (aCM) significantly differ from each other both by structure and biochemical properties. aCM own a higher mitochondrial mass compared to fCM due to increased energy demand and show a greater density and higher degree of structural organization of myofibrils. The energy metabolism in aCM relies virtually completely on β-oxidation of fatty acids while fCM use carbohydrates. Rewinding of the aCM phenotype (de-differentiation) arises frequently in diseased hearts spurring questions about its functional relevance and the extent of de-differentiation. Yet, surprisingly little is known about the changes in the human proteome occurring during maturation of fCM to aCM. Here, we examined differences between human fetal and adult hearts resulting in the quantification of 3500 proteins. Moreover, we analyzed mitochondrial proteomes from both stages to obtain more detailed insight into underlying biochemical differences. We found that the majority of changes between fCM and aCM were attributed to growth and maturation of cardiomyocytes. As expected, adult hearts showed higher mitochondrial mass and expressed increased levels of proteins involved in energy metabolism but relatively lower copy numbers of mitochondrial DNA (mtDNA) per total cell volume. We uncovered that the TFAM/mtDNA ratio was kept constant during postnatal development despite a significant increase of mitochondrial protein per mtDNA in adult mitochondria, which revises previous concepts.

PubMed Disclaimer

Publication types

LinkOut - more resources