Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Mar;23(3):313-21.
doi: 10.4014/jmb.1208.08065.

Diversity and active mechanism of fengycin-type cyclopeptides from Bacillus subtilis XF-1 against Plasmodiophora brassicae

Affiliations
Free article

Diversity and active mechanism of fengycin-type cyclopeptides from Bacillus subtilis XF-1 against Plasmodiophora brassicae

Xing-Yu Li et al. J Microbiol Biotechnol. 2013 Mar.
Free article

Abstract

Bacillus subtilis XF-1, a strain with demonstrated ability to control clubroot disease caused by Plasmodiophora brassicae, was studied to elucidate its mechanism of antifungal activity against P. brassicae. Fengycin-type cyclopeptides (FTCPs), a well-known class of compounds with strong fungitoxic activity, were purified by acid precipitation, methanol extraction, and chromatographic separation. Eight homologs of fengycin, seven homologs of dehydroxyfengycin, and six unknown FTCPs were characterized with LC/ESI-MS, LC/ESI-MS/MS, and NMR. FTCPs (250 microg/ml) were used to treat the resting spores of P. brassicae (10(7)/ml) by detecting leakage of the cytoplasm components and cell destruction. After 12 h treatment, the absorbencies at 260 nm (A(260)) and at 280 nm (A(280)) increased gradually to approaching the maximum of absorbance, accompanying the collapse of P. brassicae resting spores, and nearly no complete cells were observed at 24 h treatment. The results suggested that the cells could be cleaved by the FTCPs of B. subtilis XF-1, and the diversity of FTCPs was mainly attributed to a mechanism of clubroot disease biocontrol.

PubMed Disclaimer

Publication types

MeSH terms