Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Aug;114(8):1852-62.
doi: 10.1002/jcb.24527.

Roles of I(f) and intracellular Ca2+ release in spontaneous activity of ventricular cardiomyocytes during murine embryonic development

Affiliations

Roles of I(f) and intracellular Ca2+ release in spontaneous activity of ventricular cardiomyocytes during murine embryonic development

Peng Wang et al. J Cell Biochem. 2013 Aug.

Erratum in

  • J Cell Biochem. 2014 Sep;115(9):1636

Abstract

In recent years, the contribution of I(f), an important pacemaker current, and intracellular Ca(2+) release (ICR) from sarcoplasmic reticulum to pacemaking and arrhythmia has been intensively studied. However, their functional roles in embryonic heart remain uncertain. Using patch clamp, Ca(2+) imaging, and RT-PCR, we found that I(f) regulated the firing rate in early and late stage embryonic ventricular cells, as ivabradine (30 µM), a specific blocker of I(f), slowed down action potential (AP) frequency. This inhibitory effect was even stronger in late stage cells, though I(f) was down-regulated. In contrast to I(f), ICR was found to be indispensable for the occurrence of APs in ventricular cells of different stages, because abolishment of ICR with ryanodine and 2-aminoethoxydiphenyl borate (2-APB), specific blockers of ryanodine receptors (RyRs) and inositol trisphosphate receptors (IP3Rs), completely abolished APs. In addition, we noticed that RyR- and IP3R-mediated ICR coexisted in early-stage ventricular cells and RyRs functionally dominated. While at late stage RyRs, but not IP3Rs, mediated ICR. In both early and late stage ventricular cells, Na-Ca exchanger current (I(Na/Ca)) mediated ICR-triggered depolarization of membrane potential and resulted in the initiation of APs. We also observed that different from I(f), which presented as the substantial component of the earlier diastolic depolarization current, application of ryanodine, and/or 2-APB slowed the late phase of diastolic depolarization. Thus, we conclude that in murine embryonic ventricular cells I(f) regulates firing rate, while RyRs and IP3Rs (early stage) or RyRs (late stage)-mediated ICR determines the occurrence of APs.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources