Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Mar 20;29(11):2639-44.
doi: 10.1021/bi00463a003.

Molecular determinants of amyloid deposition in Alzheimer's disease: conformational studies of synthetic beta-protein fragments

Affiliations

Molecular determinants of amyloid deposition in Alzheimer's disease: conformational studies of synthetic beta-protein fragments

K Halverson et al. Biochemistry. .

Abstract

The amyloid beta-protein (1-42) is a major constituent of the abnormal extracellular amyloid plaque that characterizes the brains of victims of Alzheimer's disease. Two peptides, with sequences derived from the previously unexplored C-terminal region of the beta-protein, beta 26-33 (H2N-SNKGAIIG-CO2H) and beta 34-42 (H2N-LMVGGVVIA-CO2H), were synthesized and purified, and their solubility and conformational properties were analyzed. Peptide beta 26-33 was found to be freely soluble in water; however, peptide beta 34-42 was virtually insoluble in aqueous media, including 6 M guanidinium thiocyanate. The peptides formed assemblies having distinct fibrillar morphologies and different dimensions as observed by electron microscopy of negatively stained samples. X-ray diffraction revealed that the peptide conformation in the fibrils was cross-beta. A correlation between solubility and beta-structure formation was inferred from FTIR studies: beta 26-33, when dissolved in water, existed as a random coil, whereas the water-insoluble peptide beta 34-42 possessed antiparallel beta-sheet structure in the solid state. Solubilization of beta 34-42 in organic media resulted in the disappearance of beta-structure. These data suggest that the sequence 34-42, by virtue of its ability to form unusually stable beta-structure, is a major contributor to the insolubility of the beta-protein and may nucleate the formation of the fibrils that constitute amyloid plaque.

PubMed Disclaimer

Publication types