Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013;9(2):e1002924.
doi: 10.1371/journal.pcbi.1002924. Epub 2013 Feb 28.

Enhancing human spermine synthase activity by engineered mutations

Affiliations

Enhancing human spermine synthase activity by engineered mutations

Zhe Zhang et al. PLoS Comput Biol. 2013.

Abstract

Spermine synthase (SMS) is an enzyme which function is to convert spermidine into spermine. It was shown that gene defects resulting in amino acid changes of the wild type SMS cause Snyder-Robinson syndrome, which is a mild-to-moderate mental disability associated with osteoporosis, facial asymmetry, thin habitus, hypotonia, and a nonspecific movement disorder. These disease-causing missense mutations were demonstrated, both in silico and in vitro, to affect the wild type function of SMS by either destabilizing the SMS dimer/monomer or directly affecting the hydrogen bond network of the active site of SMS. In contrast to these studies, here we report an artificial engineering of a more efficient SMS variant by transferring sequence information from another organism. It is confirmed experimentally that the variant, bearing four amino acid substitutions, is catalytically more active than the wild type. The increased functionality is attributed to enhanced monomer stability, lowering the pKa of proton donor catalytic residue, optimized spatial distribution of the electrostatic potential around the SMS with respect to substrates, and increase of the frequency of mechanical vibration of the clefts presumed to be the gates toward the active sites. The study demonstrates that wild type SMS is not particularly evolutionarily optimized with respect to the reaction spermidine → spermine. Having in mind that currently there are no variations (non-synonymous single nucleotide polymorphism, nsSNP) detected in healthy individuals, it can be speculated that the human SMS function is precisely tuned toward its wild type and any deviation is unwanted and disease-causing.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Multiple sequence alignment (MSA).
(A) MSA between HsSMS and TmSRM. Conserved residues are indicated by star “*”, and the four mutations are represented in bold italic letters; (B) MSA among different SMS species. The star “*” indicates the conserved residue among different species, and the residues corresponding to the mutation sites are marked in bold italic letters.
Figure 2
Figure 2. Potential distribution.
(A) Electrostatic field lines for the WT HsSMS; Drawing method: FieldLines; GardientMag: 1.45; Min Length: 35.31; Max Length: 50.90; Coloring Scale Data Range: −1; 1; (B) Potential difference (mutant – WT) mapped onto HsSMS surface; Coloring method: Volume; 1. Drawing method: Surf; Coloring Scale Data Range: −1; 1 (blue – positive, red – negative).
Figure 3
Figure 3. Interaction networks among product SPM, active sites: D201 & D276, and pair mutation sites.
(A) WT; (B) Pmut. Pair mutation sites were shown with sticks: magenta represented L175 in WT and E175 in mutant; blue represents T178 in WT and H178 in mutant. The active sites (D201 and D276) and SPM are shown in ball and sticks: yellow represents SPM; orange represents D276 and cyan represents D201. The short red lines indicate hydrogen bonds.
Figure 4
Figure 4. Effects on hydrogen networks surrounding the mutation site C206.
(A) WT; (B) Mutant C206R. The residues are presented in sticks: green sticks represent C206 in WT and R206 in the mutant; yellow sticks represent G238; and cyan sticks represent D239. The red dash indicates the hydrogen bonds.
Figure 5
Figure 5. 3D structure of HsSMS dimer in ribbon presentation.
Four mutation sites are shown with ball representation: Yellow: S165D; Magenta: C206R; Cyan: L175E; and Orange: T178H.

Similar articles

Cited by

References

    1. Gerner EW, Meyskens FL Jr (2004) Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4: 781–792. - PubMed
    1. Pegg AE, Michael AJ (2010) Spermine synthase. Cell Mol Life Sci 67: 113–121. - PMC - PubMed
    1. Cason AL, Ikeguchi Y, Skinner C, Wood TC, Holden KR, et al. (2003) X-linked spermine synthase gene (SMS) defect: the first polyamine deficiency syndrome. European journal of human genetics 11: 937–944. - PubMed
    1. Wu H, Min J, Zeng H, McCloskey DE, Ikeguchi Y, et al. (2008) Crystal structure of human spermine synthase: implications of substrate binding and catalytic mechanism. J Biol Chem 283: 16135–16146. - PMC - PubMed
    1. Bas DC, Rogers DM, Jensen JH (2008) Very fast prediction and rationalization of pKa values for protein–ligand complexes. Proteins: Structure, Function, and Bioinformatics 73: 765–783. - PubMed

Publication types

Substances

Supplementary concepts

LinkOut - more resources