Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013;8(3):e58377.
doi: 10.1371/journal.pone.0058377. Epub 2013 Mar 4.

High prevalence of Cryptococcal antigenemia among HIV-infected patients receiving antiretroviral therapy in Ethiopia

Affiliations

High prevalence of Cryptococcal antigenemia among HIV-infected patients receiving antiretroviral therapy in Ethiopia

Abere Shiferaw Alemu et al. PLoS One. 2013.

Abstract

Background: Cryptococcal disease is estimated to be responsible for significant mortality in Sub-Saharan Africa; however, only scarce epidemiology data exists. We sought to evaluate the prevalence of and risk factors for cryptococcal antigenemia in Ethiopia.

Methods: Consecutive adult HIV-infected patients from two public HIV clinics in Addis Ababa, Ethiopia were enrolled into the study. A CD4 count ≤ 200 cells/μl was required for study participation. Patients receiving anti-retroviral therapy (ART) were not excluded. A cryptococcal antigen test was performed for all patients along with an interview, physical exam, and medical chart abstraction. Logistic regression analysis was used to assess risk factors for cryptococcal antigenemia.

Results: 369 HIV-infected patients were enrolled; mean CD4 123 cells/μl and 74% receiving ART. The overall prevalence of cryptococcal antigenemia was 8.4%; 11% in patients with a CD4 count <100 cells/μl, 8.9% with CD4 100 to 150 cells/μl and 5.7% with CD4150-200 cell/μl. 84% of patients with cryptococcal antigenemia were receiving ART. In multivariable analysis, increasing age, self reported fever, CD4 count <100 cells/μl, and site of screening were associated with an increased risk of cryptococcal antigenemia. No individual or combination of clinical symptoms had optimal sensitivity or specificity for cryptococcal antigenemia.

Conclusion: Cryptococcal antigenemia is high in Ethiopia and rapid scale up of screening programs is needed. Screening should be implemented for HIV-infected patients with low CD4 counts regardless of symptoms or receipt of ART. Further study into the effect of location and environment on cryptococcal disease is warranted.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Percentage of HIV infected patients with cryptococcal antigenemia by CD4 count and antiretroviral use.

References

    1. WHO (2011) Rapid Advice: Diagnosis, Prevention and Management of Cryptococcal Disease in HIV-infected Adults, Adolescents and Children. Geneva, World Health Organization. - PubMed
    1. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, et al. (2009) Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23: 525–530. - PubMed
    1. Rajasingham R, Meya DB, Boulware DR (2012) Integrating cryptococcal antigen screening and pre-emptive treatment into routine HIV care. J Acquir Immune Defic Syndr 59: e85–91. - PMC - PubMed
    1. Jarvis JN, Lawn SD, Vogt M, Bangani N, Wood R, et al. (2009) Screening for cryptococcal antigenemia in patients accessing an antiretroviral treatment program in South Africa. Clin Infect Dis 48: 856–862. - PMC - PubMed
    1. Liechty CA, Solberg P, Were W, Ekwaru JP, Ransom RL, et al. (2007) Asymptomatic serum cryptococcal antigenemia and early mortality during antiretroviral therapy in rural Uganda. Trop Med Int Health 12: 929–935. - PubMed

Publication types

MeSH terms