Adhesion molecules in CNS disorders: biomarker and therapeutic targets
- PMID: 23469854
- PMCID: PMC4373311
- DOI: 10.2174/1871527311312030012
Adhesion molecules in CNS disorders: biomarker and therapeutic targets
Abstract
Mounting evidence has been provided regarding the crucial role of leukocyte extravasation and subsequent inflammatory response in several central nervous system (CNS) disorders. The infiltrated leukocytes release proinflammatory mediators and activate resident cells, leading to tissue injury. Leukocyte-endothelia interaction is critical for leukocyte extravasation and migration from the intravascular space into the tissue during inflammation. The basic physiology of leukocyte-endothelia interaction has been investigated extensively. Traditionally, three kinds of adhesion molecules, selectin, integrin, and immunoglobulin families, are responsible for this multiple-step interaction. Furthermore, blocking adhesion molecule function by genetic knockout, antagonizing antibodies, or inhibitory pharmacological drugs provides neuroprotection, which is associated with a reduction in leukocyte accumulation within the tissue. Detection of the soluble form of adhesion molecules has also been proven to predict outcomes in CNS disorders. Lately, vascular adhesion protein-1, a novel adhesion molecule and endothelial cell surface enzyme, has been implicated as a brake in the rolling step of the adhesion cascade, and also a regulator of leukocyte transmigration step. In this review, we summarize the functions of traditional adhesion molecules as well as vascular adhesion protein-1in the leukocyte adhesion cascade. We also discuss the diagnostic and therapeutic potential of adhesion molecules in CNS disorders.
Figures
References
-
- Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37(1):13–25. - PubMed
-
- Vestweber D. Adhesion and signaling molecules controlling the transmigration of leukocytes through endothelium. Immunol Rev. 2007;218:178–196. - PubMed
-
- Nourshargh S, Hordijk PL, Sixt M. Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat Rev Mol Cell Biol. 2010;11(5):366–378. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials