Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Editorial
. 2013 Mar 15;12(6):865-6.
doi: 10.4161/cc.24217. Epub 2013 Mar 7.

The yin and yang of cyclin control by nutrients

Editorial

The yin and yang of cyclin control by nutrients

Javier Jiménez et al. Cell Cycle. .
No abstract available

Keywords: Cln3; Pho85; Ssa1; cell cycle; nitrogen; phosphate; yeast.

PubMed Disclaimer

Figures

None
Figure 1. Nutrient signals converge on Cln3 via divergent activities of Pho85. Phosphate availability activates the PHO pathway, wherein the cyclin Pho80 activates the CDK Pho85 to directly phosphorylate Cln3 on the borders of the PEST degron, thereby protecting Cln3 from ubiquitin-proteasomal degradation. The resulting Cln3 stabilization permits Cdk1-Cln3 activity to accumulate and promote G1/S progression. By contrast, nitrogen starvation or sensing of mating pheromone induce cyclins Clg1 or Pcl2 to activate Pho85 to phosphorylate the chaperone Ssa1. Cln3 binding and PEST phosphorylation induce Cln3 degradation. Thus, nitrogen or phosphate starvation similarly block cell cycle progression via regulation of opposing functions of Pho85.

Comment on

  • Menoyo S, Ricco N, Bru S, Hernández-Ortega S, Escoté X, Aldea M, et al. Phosphate-activated CDK stabilizes G1 cyclin to trigger cell cycle entry. Mol Cell Biol. 2013 doi: 10.1128/MCB.01556-12. doi: 10.1128/MCB.01556-12
  • Truman AW, Kristjansdottir K, Wolfgeher D, Hasin N, Polier S, Zhang H, et al. CDK-dependent Hsp70 Phosphorylation controls G1 cyclin abundance and cell-cycle progression. Cell. 2012;151:1308–18. doi: 10.1016/j.cell.2012.10.051. doi: 10.1016/j.cell.2012.10.051

References

    1. Bloom J, Cross FR. Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol. 2007;8:149–60. doi: 10.1038/nrm2105. - DOI - PubMed
    1. Truman AW, Kristjansdottir K, Wolfgeher D, Hasin N, Polier S, Zhang H, et al. CDK-dependent Hsp70 Phosphorylation controls G1 cyclin abundance and cell-cycle progression. Cell. 2012;151:1308–18. doi: 10.1016/j.cell.2012.10.051. - DOI - PMC - PubMed
    1. Menoyo S, Ricco N, Bru S, Hernández-Ortega S, Escoté X, Aldea M, et al. Phosphate-activated CDK stabilizes G1 cyclin to trigger cell cycle entry. Mol Cell Biol. 2013 doi: 10.1128/MCB.01556-12. - DOI - PMC - PubMed
    1. Huang D, Friesen H, Andrews B. Pho85, a multifunctional cyclin-dependent protein kinase in budding yeast. Mol Microbiol. 2007;66:303–14. doi: 10.1111/j.1365-2958.2007.05914.x. - DOI - PubMed
    1. Lee YS, Huang K, Quiocho FA, O’Shea EK. Molecular basis of cyclin-CDK-CKI regulation by reversible binding of an inositol pyrophosphate. Nat Chem Biol. 2008;4:25–32. doi: 10.1038/nchembio.2007.52. - DOI - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources