Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013;8(3):e57860.
doi: 10.1371/journal.pone.0057860. Epub 2013 Mar 5.

Effect of simulated microgravity on E. coli K12 MG1655 growth and gene expression

Affiliations

Effect of simulated microgravity on E. coli K12 MG1655 growth and gene expression

Kotakonda Arunasri et al. PLoS One. 2013.

Abstract

This study demonstrates the effects of simulated microgravity on E. coli K 12 MG1655 grown on LB medium supplemented with glycerol. Global gene expression analysis indicated that the expressions of hundred genes were significantly altered in simulated microgravity conditions compared to that of normal gravity conditions. Under these conditions genes coding for adaptation to stress are up regulated (sufE and ssrA) and simultaneously genes coding for membrane transporters (ompC, exbB, actP, mgtA, cysW and nikB) and carbohydrate catabolic processes (ldcC, ptsA, rhaD and rhaS) are down regulated. The enhanced growth in simulated gravity conditions may be because of the adequate supply of energy/reducing equivalents and up regulation of genes involved in DNA replication (srmB) and repression of the genes encoding for nucleoside metabolism (dfp, pyrD and spoT). In addition, E. coli cultured in LB medium supplemented with glycerol (so as to protect the cells from freezing temperatures) do not exhibit multiple stress responses that are normally observed when cells are exposed to microgravity in LB medium without glycerol.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Growth of E. coli at 30°C under microgravity conditions in a clinostat (□) and under normal gravity (▪) conditions.
Figure 2
Figure 2. DNA microarray analysis of clinostat-induced gene expression in E. coli.
The Volcano plot depicts gene expression in E. coli culture at 0.8 OD (OD600 nm) cultured in the presence of 10% glycerol under microgravity conditions compared to the control. Genes that are represented on the right side of the volcano-axis are up regulated and those that are on left side of the axis are down regulated. Out of the 4377 genes (O) analysed, 53genes were upregulated (•) and 47were down regulated (•).Only those genes that showed more than 1.5 fold change in expression and a P value <0.05 were identified as either up- or down-regulated. The x-axis represents the fold change and the dark vertical lines represent cut-offs at 1.5 fold decrease and increase. The y-axis represents the p-values and the dark horizontal line indicates a p value cut-off of 0.05.
Figure 3
Figure 3. Effect of microgravity on the expression of genes hyaE, mdtD, srmB, pyrD, rhaD, yicL and ldcC using RNA from E. coli grown in a clinostat (▪)and compared with E. coli grown in normal gravity conditions (□).
The OD of the the cultures was 0.8 (OD600 nm) The P values were pyrD, rhaD (P<0.001), yicL (p<0.05), srmB, hyaE, mdtD and ldcC (P<0.1) respectively.
Figure 4
Figure 4. Distribution of down regulated genes (%) based on biological process classification reported by Gene ontology term functional categories using DAVID version 2.0 software.

References

    1. Vukanti R, Mintz E, Leff L (2008) Changes in gene expression of E. coli under conditions of modelled reduced gravity. Microgravity Sci Technol 20: 41–57.
    1. Nickerson CA, Ott CM, Mister SJ, Orrow BJ, Burns-Keliher L, et al. (2000) Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infect Immun 68: 3147–3152. - PMC - PubMed
    1. Wilson JW, Ott CM, Bentrup KH, Ramamurthy R, Quicka L, et al. (2007) Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci 104: 16299–16304. - PMC - PubMed
    1. Rosenzweig JA, Abogunde O, Thomas K, Lawal A, Y-Uyen Nguyen, et al. (2010) Spaceflight and modeled microgravity effects on microbial growth and virulence. Appl Microbiol Biotechnol 85: 885–891. - PMC - PubMed
    1. Chopra VA, Fadl AA, Sha J, Chopra S, Galindo CL, et al. (2006) Alterations in the virulence potential of enteric pathogens and bacterial–host cell interactions under simulated microgravity conditions. J Toxicol Environ Health A 69: 1345–1370. - PubMed

Publication types

MeSH terms