Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Mar 7;12(3):354-67.
doi: 10.1016/j.stem.2013.01.008.

Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression

Affiliations
Free article

Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression

Peter Reinhardt et al. Cell Stem Cell. .
Free article

Abstract

The LRRK2 mutation G2019S is the most common genetic cause of Parkinson's disease (PD). To better understand the link between mutant LRRK2 and PD pathology, we derived induced pluripotent stem cells from PD patients harboring LRRK2 G2019S and then specifically corrected the mutant LRRK2 allele. We demonstrate that gene correction resulted in phenotypic rescue in differentiated neurons and uncovered expression changes associated with LRRK2 G2019S. We found that LRRK2 G2019S induced dysregulation of CPNE8, MAP7, UHRF2, ANXA1, and CADPS2. Knockdown experiments demonstrated that four of these genes contribute to dopaminergic neurodegeneration. LRRK2 G2019S induced increased extracellular-signal-regulated kinase 1/2 (ERK) phosphorylation. Transcriptional dysregulation of CADPS2, CPNE8, and UHRF2 was dependent on ERK activity. We show that multiple PD-associated phenotypes were ameliorated by inhibition of ERK. Therefore, our results provide mechanistic insight into the pathogenesis induced by mutant LRRK2 and pointers for the development of potential new therapeutics.

PubMed Disclaimer

Comment in

Publication types

MeSH terms