Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Dec;31(6):315-22.
doi: 10.1111/1755-5922.12030.

State of play of pharmacogenetics and personalized medicine in heart failure

Affiliations
Free article
Review

State of play of pharmacogenetics and personalized medicine in heart failure

Helen M Parry et al. Cardiovasc Ther. 2013 Dec.
Free article

Abstract

Heart failure is a common disease with high levels of morbidity and mortality. A large body of evidence guiding treatment shows prognostic benefit with beta-blockers and angiotensin-converting enzyme inhibitors, while diuretics are commonly prescribed for symptomatic benefit. Wide variation in drug response between clinically similar patients is a significant problem. Evidence suggests this may have a genetic component. Variation in candidate genes including the beta-1, beta-2, and alpha-2 adrenergic receptors, the renin-angiotensin-aldosterone pathway and genes involved in renal electrolyte handling with diuretics may be important. Single-nucleotide polymorphisms (SNPs) potentially influencing drug response include the Arg 389 Gly variant and the Ser 49 Gly variant in the beta-1 adrenergic receptor, the Arg 16 Gly, Gln 27 Glu, and Thr 164 Ile polymorphisms within the beta-2 adrenergic receptor, an insertion at the 287th base pair in the angiotensin-converting enzyme and the Gly 264 Ala mutation in the sodium chloride co-transporter. However, research addressing the clinical significance of these polymorphisms has yielded conflicting results that have had no influence on clinical practice. Genome-wide association studies may provide an alternative approach to discovering genetic variations influencing drug response, a relatively unchartered area in heart failure management. If future work in this area produces a strong case that variation in drug response has a specific and clinically meaningful genetic component, this could be used to guide drug dosing based on genotype; a step forward in the journey toward personally tailored medicine.

Keywords: Candidate genes; Genome-wide association study; Heart failure; Pharmacogenetics; Pharmacogenomics.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources