Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jun;73(6):719-25.
doi: 10.1038/pr.2013.42. Epub 2013 Mar 12.

Inhibition of LRP5/6-mediated Wnt/β-catenin signaling by Mesd attenuates hyperoxia-induced pulmonary hypertension in neonatal rats

Affiliations

Inhibition of LRP5/6-mediated Wnt/β-catenin signaling by Mesd attenuates hyperoxia-induced pulmonary hypertension in neonatal rats

Deepthi Alapati et al. Pediatr Res. 2013 Jun.

Abstract

Background: Hyperoxia-induced neonatal lung injury is associated with activation of Wnt/β-catenin signaling. Low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) are Wnt coreceptors that bind to Wnt ligands and mediate canonical Wnt/β-catenin signaling. We hypothesized that inhibition of LRP5/6 by their universal inhibitor, Mesd, would attenuate hyperoxia-induced lung injury.

Methods: Newborn rat pups were randomly exposed to normoxia or hyperoxia at 90% FiO2 and injected intraperitoneally with placebo or Mesd every other day for 14 d. On day 15, phosphorylation of LRP5/6 (pLRP5/6), expression of Wnt/β-catenin target genes, cyclin D1 and Wnt-induced signaling protein-1 (WISP-1), right-ventricular systolic pressure (RVSP), right-ventricular hypertrophy (RVH), pulmonary vascular remodeling, alveolarization, and vascularization were measured.

Results: Hyperoxia exposure markedly induced pLRP5/6, cyclin D1, and WISP-1 expression in the lungs of placebo animals, but they were significantly attenuated by the administration of Mesd. Mesd also significantly attenuated hyperoxia-induced pulmonary hypertension (PH) and pulmonary vascular remodeling. However, there was no effect on alveolarization or vascularization after Mesd administration.

Conclusion: This study demonstrates that LRP5/6 mediates pulmonary vascular remodeling and PH in hyperoxia-induced neonatal lung injury, thereby suggesting a potential therapeutic target to alleviate PH in neonates with severe bronchopulmonary dysplasia.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources