Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Mar 12:7:38.
doi: 10.3389/fncir.2013.00038. eCollection 2013.

Nanowire electrodes for high-density stimulation and measurement of neural circuits

Affiliations
Review

Nanowire electrodes for high-density stimulation and measurement of neural circuits

Jacob T Robinson et al. Front Neural Circuits. .

Abstract

Brain-machine interfaces (BMIs) that can precisely monitor and control neural activity will likely require new hardware with improved resolution and specificity. New nanofabricated electrodes with feature sizes and densities comparable to neural circuits may lead to such improvements. In this perspective, we review the recent development of vertical nanowire (NW) electrodes that could provide highly parallel single-cell recording and stimulation for future BMIs. We compare the advantages of these devices and discuss some of the technical challenges that must be overcome for this technology to become a platform for next-generation closed-loop BMIs.

Keywords: brain machine interface (BMI); electrophysiology; nanotechnology; nanowires; neuroengineering.

PubMed Disclaimer

Figures

Figure 1
Figure 1
NWs as intracellular electrodes. (A) The electrode diameters for various methods to record and stimulate neural activity. Electrodes with diameters less than 1 micron can be used as intracellular probes. Photo credits: DBS—EPDA.com, Microelectrodes—microsystems.utah.edu. (B) Equivalent circuit model for a cell on top of an extracellular (left) and intracellular (right) electrode. The membrane resistance, capacitance, and Nernst potential is shown as Rm, Cm, and Em, respectively. The voltage recorded extracellularly (Vex) is proportional to Im, and typically has a magnitude of 0.4 mV for a neuronal action potential. The voltage recorded intracellularly (Vin), however, is proportional to Vm, and typically has a magnitude of greater than 10 mV for a neuronal action potential. (C) Optical microscope image of a rat cortical neuron grown on top of a vertical NW electrode, scale bar 10 microns. (D) Scanning electron micrograph of a set of vertical NWs, scale bar 1 micron. [(C) and (D) adapted from Robinson et al. (2012)].
Figure 2
Figure 2
Intracellular recording methods. (A) Whole cell patch pipette configuration measures a voltage (Vpipette) proportional to the membrane potential (Vm). (B) A vertical glass nanotube (blue) is grown on top of an FET (pink) that lies within an insulated NW (gray). When the nanotube penetrates the cellular membrane, the membrane potential can be measured as a change in the source-drain current (ISD). (C) A platinum NW (red) is deposited on top of a platinum electrode (red) that is insulated by silicon nitride (blue). The voltage recorded at the NW (VNW) is then proportional to the membrane potential. (D) A silicon NW (gray) insulated by glass (blue) is capped with a metallic film such as platinum (red). Similarly to (C), VNW is proportional to Vm, however in this configuration the NW sidewalls are insulated by glass, improving the amplitude of the measured signal and proving a surface for cell membrane fusion.

References

    1. Almquist B., Melosh N. (2010). Fusion of biomimetic stealth probes into lipid bilayer cores. Proc. Natl. Acad. Sci. U.S.A. 107, 5815–5820 10.1073/pnas.0909250107 - DOI - PMC - PubMed
    1. Arden W. M. (2002). The international technology roadmap for semiconductors-perspectives and challenges for the next 15 years. Curr. Opin. Solid State Mater. Sci. 6, 371–377
    1. Bourne S. K., Eckhardt C. A., Sheth S. A., Eskandar E. N. (2012). Mechanisms of deep brain stimulation for obsessive compulsive disorder: effects upon cells and circuits. Front. Integr. Neurosci. 6:29 10.3389/fnint.2012.00029 - DOI - PMC - PubMed
    1. Chia T., Levene M. (2009). Microprisms for in vivo multilayer cortical imaging. J. Neurophysiol. 102, 1310–1314 10.1152/jn.91208.2008 - DOI - PubMed
    1. Dickey A. S., Suminski A., Amit Y., Hatsopoulos N. G. (2009). Single-unit stability using chronically implanted multielectrode arrays. J. Neurophysiol. 102, 1331–1339 10.1152/jn.90920.2008 - DOI - PMC - PubMed

Publication types