Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May;82(1-2):59-70.
doi: 10.1007/s11103-013-0037-0. Epub 2013 Mar 15.

Plastid gene expression during chloroplast differentiation and dedifferentiation into non-photosynthetic plastids during seed formation

Affiliations

Plastid gene expression during chloroplast differentiation and dedifferentiation into non-photosynthetic plastids during seed formation

Guillaume Allorent et al. Plant Mol Biol. 2013 May.

Abstract

Arabidopsis seed formation is coupled with two plastid differentiation processes. Chloroplast formation starts during embryogenesis and ends with the maturation phase. It is followed by chloroplast dedifferentiation/degeneration that starts at the end of the maturation phase and leads to the presence of small non-photosynthetic plastids in dry seeds. We have analysed mRNA and protein levels of nucleus- and plastid-encoded (NEP and PEP) components of the plastid transcriptional machinery, mRNA and protein levels of some plastid RNA polymerase target genes, changes in plastid transcriptome profiles and mRNA and protein levels of some selected nucleus-encoded plastid-related genes in developing seeds during embryogenesis, maturation and desiccation. As expected, most of the mRNAs and proteins increase in abundance during maturation and decrease during desiccation, when plastids dedifferentiate/degenerate. In contrast, mRNAs and proteins of components of the plastid transcriptional apparatus do not decrease or even still increase during the period of plastid dedifferentiation. Results suggest that proteins of the plastid transcriptional machinery are specifically protected from degradation during the desiccation period and conserved in dry seeds to allow immediate regain of plastid transcriptional activity during stratification/germination. In addition, results reveal accumulation and storage of mRNAs coding for RNA polymerase components and sigma factors in dry seeds. They should provide immediately-to-use templates for translation on cytoplasmic ribosomes in order to enhance RNA polymerase protein levels and to provide regulatory proteins for stored PEP to guaranty efficient plastid genome transcription during germination.

PubMed Disclaimer

References

    1. Plant Mol Biol. 2010 May;73(1-2):119-29 - PubMed
    1. Annu Rev Plant Biol. 2012;63:507-33 - PubMed
    1. Science. 1965 Jan 22;147(3656):410-2 - PubMed
    1. Plant Physiol. 2003 Jun;132(2):739-47 - PubMed
    1. Anal Biochem. 1978 Aug 15;89(1):264-73 - PubMed

Publication types

MeSH terms

LinkOut - more resources