Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Nov;67(2):615-22.
doi: 10.1007/s12013-013-9549-0.

Propofol administration modulates AQP-4 expression and brain edema after traumatic brain injury

Affiliations

Propofol administration modulates AQP-4 expression and brain edema after traumatic brain injury

Zhongyang Ding et al. Cell Biochem Biophys. 2013 Nov.

Abstract

The increased intracranial pressure caused by brain edema following traumatic brain injury (TBI) always leads to poor patient prognosis. Aquaporin-4 (AQP-4) plays an important role in edema formation and resolution, which may provide a novel therapeutic target for edema treatment. In this present study, we found that propofol treatment, within a short time, after TBI significantly reduced brain edema in a controlled cortical injury rat model and suppressed in vivo expression of AQP-4. The ameliorating effect of propofol was associated with attenuated expression of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). In addition, the regulatory effect of propofol on AQP-4 expression was investigated in cultured astrocytes. Results showed that propofol could block the stimulatory effect of IL-1β and TNF-α on AQP-4 expression in cultured astrocytes. We also found that both NFκB and p38/MAPK pathways were involved in IL-1β and TNF-α-induced AQP-4 expression and that propofol functions as a dual inhibitor of NFκB and p38/MAPK pathways. In conclusion, treatment with propofol, within a short time, after TBI attenuates cerebral edema and reduces the expression of AQP-4. Propofol modulates acute AQP-4 expression by attenuating IL-1β and TNF-α expression and inhibiting IL-1β and TNF-α induced AQP-4 expression.

PubMed Disclaimer

MeSH terms

LinkOut - more resources