Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May 10;19(20):6265-73.
doi: 10.1002/chem.201203940. Epub 2013 Mar 13.

In situ synthesis and nonvolatile rewritable-memory effect of polyaniline-functionalized graphene oxide

Affiliations

In situ synthesis and nonvolatile rewritable-memory effect of polyaniline-functionalized graphene oxide

Bin Zhang et al. Chemistry. .

Abstract

A new polyaniline (PANI)-functionalized graphene oxide (GO-PANI) was prepared by using an in situ oxidative graft polymerization of aniline on the surface of GO. Its highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), ionization potential (IP), and electron affinity (EA) values experimentally estimated by the onset of the redox potentials were -5.33, -3.57, 5.59, and 3.83 eV, respectively. A bistable electrical-switching effect was observed in electronic device with the GO-PANI film sandwiched between the indium tin oxide (ITO) and Al electrodes. This device exhibited two accessible conductivity states, that is, the low-conductivity (OFF) state and the high-conductivity (ON) state, and can be switched to the ON state under a negative electrical sweep, and can also be reset to the initial OFF state by a reverse (positive) electrical sweep. The ON state is nonvolatile and can withstand a constant voltage stress of -1 V for 3 h and 10(8) read cycles at -1 V under ambient conditions. The nonvolatile nature of the ON state and the ability to write, read, and erase the electrical states, fulfill the functionality of a rewritable memory. An ON/OFF current ratio of more than 10(4) at -1 V achieved in this memory device is high enough to promise a low misreading rate through the precise control of the ON and OFF states. The mechanism associated with the memory effects was elucidated from molecular simulation results.

PubMed Disclaimer

LinkOut - more resources