Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct;2(10):1370-6.
doi: 10.1002/adhm.201200370. Epub 2013 Mar 12.

Dimeric gold nanoparticle assemblies as tags for SERS-based cancer detection

Affiliations

Dimeric gold nanoparticle assemblies as tags for SERS-based cancer detection

A Swarnapali D S Indrasekara et al. Adv Healthc Mater. 2013 Oct.

Abstract

Herein, a new class of multifunctional materials combining a clustered nanoparticle-based probe is presented for surface enhanced Raman scattering (SERS)-based microscopy and surface functionalization for tissue targeting. Controlled assembly of spherical gold nanoparticles into dimers (DNP-REP) is engineered using a small, rigid Raman-active dithiolated linking reporter (REP) to yield narrow internanoparticle gaps and to strategically generate the "hot spot" while concurrently placing the reporter within the region of highest SERS enhancement. Peptide functionalized DNP-REP materials are highly stable even upon incubation with living cells and show controlled levels of binding and intracellular endocytosis. To demonstrate the functionality of such probes for disease detection, differentially targeted DNP-REPs are incubated over various time points with cultured human glioblastoma cells. Using human glioblastoma cells, the SERS maps of targeted tumor cells show the markedly enhanced signals of the DNP-REP, compared to conventional confocal fluorescence based approaches, especially at low incubation times. Even with as few as 40 internalized DNP-REP, a relatively intense SERS signal is measured, demonstrating the high signal to noise ratio and inherent biocompatibility of the materials. Thus, these Raman reporter-based nanoparticle cluster probes present a promising and versatile optical imaging tool for fast, reliable, selective, and ultrasensitive tissue targeting and disease detection and screening.

Keywords: SERS; dimers; gold nanoparticles; imaging; targeting.

PubMed Disclaimer

Publication types

LinkOut - more resources