Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Mar 13;14(1):34.
doi: 10.1186/1465-9921-14-34.

Th17 cytokines induce pro-fibrotic cytokines release from human eosinophils

Affiliations

Th17 cytokines induce pro-fibrotic cytokines release from human eosinophils

Saleh Al-Muhsen et al. Respir Res. .

Abstract

Background: Subepithelial fibrosis is one of the most critical structural changes affecting bronchial airway function during asthma. Eosinophils have been shown to contribute to the production of pro-fibrotic cytokines, TGF-β and IL-11, however, the mechanism regulating this process is not fully understood.

Objective: In this report, we investigated whether cytokines associated with inflammation during asthma may induce eosinophils to produce pro-fibrotic cytokines.

Methods: Eosinophils were isolated from peripheral blood of 10 asthmatics and 10 normal control subjects. Eosinophils were stimulated with Th1, Th2 and Th17 cytokines and the production of TGF-β and IL-11 was determined using real time PCR and ELISA assays.

Results: The basal expression levels of eosinophil derived TGF-β and IL-11 cytokines were comparable between asthmatic and healthy individuals. Stimulating eosinophils with Th1 and Th2 cytokines did not induce expression of pro-fibrotic cytokines. However, stimulating eosinophils with Th17 cytokines resulted in the enhancement of TGF-β and IL-11 expression in asthmatic but not healthy individuals. This effect of IL-17 on eosinophils was dependent on p38 MAPK activation as inhibiting the phosphorylation of p38 MAPK, but not other kinases, inhibited IL-17 induced pro-fibrotic cytokine release.

Conclusions: Th17 cytokines might contribute to airway fibrosis during asthma by enhancing production of eosinophil derived pro-fibrotic cytokines. Preventing the release of pro-fibrotic cytokines by blocking the effect of Th17 cytokines on eosinophils may prove to be beneficial in controlling fibrosis for disorders with IL-17 driven inflammation such as allergic and autoimmune diseases.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Basal expression of pro-fibrotic cytokines by human eosinophils isolated from asthmatic and controls subjects. Eosinophils were isolated from 10 asthmatic and 10 controls subjects and total RNA was extracted from 2×106 million cells and quantified using real-time PCR. A: Level of expression of TGF-β1 and IL-11 mRNA in eosinophils of asthmatic versus control subjects (n = 10). B: Levels of TGF-β1 and IL-11 cytokines within the supernatant of un-stimulated eosinophils (n = 10) as determined by ELISA assay. (C-D) Effect of Th1 and Th2 cytokines on asthmatic eosinophil TGF-β1 and IL-11 transcripts levels. Level of expression of TGF-β1 (C) and IL-11 (D) mRNA as quantified by real-time PCR following 4 hours exposure to mediators. Data is presented as percentage of basal expression (n = 10).
Figure 2
Figure 2
IL-17 and IL-23 enhance eosinophil expression of pro-fibrotic cytokines. (A) Surface expression of IL-17R on eosinophils (1×106 cells) isolated from healthy and asthmatics was determined by flow cytometry. Blots are representative data for eosinophils isolated from one healthy control and one asthmatic patient. The graph shows arithmetic mean ± SD of IL-17R positive eosinophils as percentage of total eosinophils (n = 5). 2×106 peripheral blood eosinophils isolated from 10 asthmatic and 10 controls subjects were stimulated with IL-17A, F, and IL-23 (50 ng/ml or 25 ng/ml) alone or in combination for 4 hrs. Total RNA was extracted and mRNA levels of TGF-β and IL-11 were then quantified using real-time PCR. mRNA expression levels of TGF-β (B) and IL-11 (C) were normalized with GAPDH for asthmatic versus healthy individuals.
Figure 3
Figure 3
Th17 cytokines enhance eosinophil production and release of pro-fibrotic cytokines. Levels of TGF-β (A) and IL-11 (B) in the supernatant of stimulated eosinophils (1×106 cells/0.5 ml) were determined 24 hrs following Th17 cytokine stimulation (0-100 ng/ml) using ELISA assay. Results are expressed as the arithmetic mean ± SD from 5 independent experiments. * = p < 0.05.
Figure 4
Figure 4
P38 MAP Kinase activation is required for IL-17 enhancement of eosinophil derived pro-fibrotic cytokines. Eosinophils were isolated from peripheral blood of 10 asthmatic patients and 2×106/ml cells were treated, or not, with p38 MAPK or PI3K inhibitors (SB2035802 and PI103, respectively) 2 hours prior to stimulation with IL-17 (50 ng/ml). Levels of TGF-β (A) and IL-11 (B) in the supernatant of stimulated eosinophils were then determined 24 hrs following Th17 cytokine stimulation using ELISA assay (n = 10). (C) Induction of p38 MAPK phosphorylation by a combination of IL-17A and IL-17 F (50 ng/ml each) is detected by western analysis. The western data shown represent one of similar results from 4 independent experiments. * = p < 0.05 compared to non-stimulated (NS). ** = p < 0.05 compared to stimulated not inhibited.

References

    1. Vignola AM, Mirabella F, Costanzo G, Di Giorgi R, Gjomarkaj M, Bellia V, Bonsignore G. Airway remodeling in asthma. Chest. 2003;123:417S–422S. doi: 10.1378/chest.123.3_suppl.417S. - DOI - PubMed
    1. Vignola AM, Kips J, Bousquet J. Tissue remodeling as a feature of persistent asthma. J Allergy Clin Immunol. 2000;105:1041–1053. doi: 10.1067/mai.2000.107195. - DOI - PubMed
    1. Benayoun L, Druilhe A, Dombret MC, Aubier M, Pretolani M. Airway structural alterations selectively associated with severe asthma. Am J Respir Crit Care Med. 2003;167:1360–1368. doi: 10.1164/rccm.200209-1030OC. - DOI - PubMed
    1. Sumi Y, Hamid Q. Airway remodeling in asthma. Allergol Int. 2007;56:341–348. doi: 10.2332/allergolint.R-07-153. - DOI - PubMed
    1. Roche WR, Beasley R, Williams JH, Holgate ST. Subepithelial fibrosis in the bronchi of asthmatics. Lancet. 1989;1:520–524. - PubMed

Publication types

MeSH terms