Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Mar;9(3):e1003205.
doi: 10.1371/journal.ppat.1003205. Epub 2013 Mar 7.

Influenza virus aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks

Affiliations

Influenza virus aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks

Donald K Milton et al. PLoS Pathog. 2013 Mar.

Abstract

The CDC recommends that healthcare settings provide influenza patients with facemasks as a means of reducing transmission to staff and other patients, and a recent report suggested that surgical masks can capture influenza virus in large droplet spray. However, there is minimal data on influenza virus aerosol shedding, the infectiousness of exhaled aerosols, and none on the impact of facemasks on viral aerosol shedding from patients with seasonal influenza. We collected samples of exhaled particles (one with and one without a facemask) in two size fractions ("coarse">5 µm, "fine"≤5 µm) from 37 volunteers within 5 days of seasonal influenza onset, measured viral copy number using quantitative RT-PCR, and tested the fine-particle fraction for culturable virus. Fine particles contained 8.8 (95% CI 4.1 to 19) fold more viral copies than did coarse particles. Surgical masks reduced viral copy numbers in the fine fraction by 2.8 fold (95% CI 1.5 to 5.2) and in the coarse fraction by 25 fold (95% CI 3.5 to 180). Overall, masks produced a 3.4 fold (95% CI 1.8 to 6.3) reduction in viral aerosol shedding. Correlations between nasopharyngeal swab and the aerosol fraction copy numbers were weak (r = 0.17, coarse; r = 0.29, fine fraction). Copy numbers in exhaled breath declined rapidly with day after onset of illness. Two subjects with the highest copy numbers gave culture positive fine particle samples. Surgical masks worn by patients reduce aerosols shedding of virus. The abundance of viral copies in fine particle aerosols and evidence for their infectiousness suggests an important role in seasonal influenza transmission. Monitoring exhaled virus aerosols will be important for validation of experimental transmission studies in humans.

PubMed Disclaimer

Conflict of interest statement

BJC has received research funding from MedImmune Inc., and consults for Crucell MV. The authors declare that no other competing interests exist.This does not alter our adherence to all PLoS Pathogens policies on sharing data and materials.

Figures

Figure 1
Figure 1. Influenza virus copy number in aerosol particles exhaled by patients with and without wearing of an ear-loop surgical mask.
Counts below the limit of detection are represented as 0.5 on the log scale.
Figure 2
Figure 2. Exhaled breath collection system.
Each volunteer sat as shown with face inside the inlet cone of the human exhaled breath air sampler inside a booth supplied with HEPA filtered, humidified air for 30 min while wearing an ear-loop surgical mask. Three times during the 30 min each subject was asked to cough 10 times. After investigators changed the collection media, the volunteer sat in the cone again, without wearing a surgical mask, for another 30 min with coughing as before.

Similar articles

Cited by

References

    1. Fabian P, McDevitt JJ, DeHaan WH, Fung RO, Cowling BJ, et al. (2008) Influenza virus in human exhaled breath: an observational study. PLoS ONE 3: e2691. - PMC - PubMed
    1. Johnson GR, Morawska L (2009) The Mechanism of Breath Aerosol Formation. J Aerosol Med Pulm Drug Deliv 22: 229–37. - PubMed
    1. Committee on Respiratory Protection for Healthcare Workers in the Workplace Against Novel H1N1 Influenza A (2009) Respiratory Protection for Healthcare Workers in the Workplace Against Novel H1N1 Influenza A: A Letter Report. Washington, DC: Institute of Medicine. 60 p.
    1. Atkinson MP, Wein LM (2008) Quantifying the routes of transmission for pandemic influenza. Bull Math Biol 70: 820–867. - PubMed
    1. Nicas M, Jones RM (2009) Relative contributions of four exposure pathways to influenza infection risk. Risk Anal 29: 1292–1303. - PubMed

Publication types