Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013;7(3):e2106.
doi: 10.1371/journal.pntd.0002106. Epub 2013 Mar 7.

Evaluation of the health-related quality of life of children in Schistosoma haematobium-endemic communities in Kenya: a cross-sectional study

Affiliations

Evaluation of the health-related quality of life of children in Schistosoma haematobium-endemic communities in Kenya: a cross-sectional study

Carolyn C Terer et al. PLoS Negl Trop Dis. 2013.

Abstract

Background: Schistosomiasis remains a global public health challenge, with 93% of the ~237 million infections occurring in sub-Saharan Africa. Though rarely fatal, its recurring nature makes it a lifetime disorder with significant chronic health burdens. Much of its negative health impact is due to non-specific conditions such as anemia, undernutrition, pain, exercise intolerance, poor school performance, and decreased work capacity. This makes it difficult to estimate the disease burden specific to schistosomiasis using the standard DALY metric.

Methodology/principal findings: In our study, we used Pediatric Quality of Life Inventory (PedsQL), a modular instrument available for ages 2-18 years, to assess health-related quality of life (HrQoL) among children living in a Schistosoma haematobium-endemic area in coastal Kenya. The PedsQL questionnaires were administered by interview to children aged 5-18 years (and their parents) in five villages spread across three districts. HrQoL (total score) was significantly lower in villages with high prevalence of S. haematobium (-4.0%, p<0.001) and among the lower socioeconomic quartiles (-2.0%, p<0.05). A greater effect was seen in the psychosocial scales as compared to the physical function scale. In moderate prevalence villages, detection of any parasite eggs in the urine was associated with a significant 2.1% (p<0.05) reduction in total score. The PedsQL reliabilities were generally high (Cronbach alphas ≥0.70), floor effects were acceptable, and identification of children from low socioeconomic standing was valid.

Conclusions/significance: We conclude that exposure to urogenital schistosomiasis is associated with a 2-4% reduction in HrQoL. Further research is warranted to determine the reproducibility and responsiveness properties of QoL testing in relation to schistosomiasis. We anticipate that a case definition based on more sensitive parasitological diagnosis among younger children will better define the immediate and long-term HrQoL impact of Schistosoma infection.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Map of the study area showing location of study villages in Coast Province, Kenya.
Figure 2
Figure 2. Flow chart of study participation.
Numbers of children by village at enrolment, at parasitological and anthropometric testing, and at HrQoL assessment.
Figure 3
Figure 3. PedsQL SF15 score scales contrasting high and moderate risk villages for self and proxy reports.
Abbreviations: Phy-Physical; Emo-Emotional; Soc-Social; Sch-School; Psy-Psychosocial, Tot-Total. NS-Not significant; **P<0.001; ***P<0.0001.

Similar articles

Cited by

References

    1. WHO (2012) Schistosomiasis: population requiring preventive chemotherapy and number of people treated in 2010. Weekly Epidemiological Record 87: 37–44. - PubMed
    1. El-Khoby T, Galal N, Fenwick A, Barakat R, El-Hawey A, et al. (2000) The epidemiology of schistosomiasis in Egypt: summary findings in nine governorates. American Journal of Tropical Medicine and Hygiene 62: 88–99. - PubMed
    1. Kapito-Tembo AP, Mwapasa V, Meshnick SR, Samanyika Y, Banda D, et al. (2009) Prevalence distribution and risk factors for Schistosoma hematobium infection among school children in Blantyre, Malawi. PloS Neglected Tropical Diseases 3: e361. - PMC - PubMed
    1. Matthys B, Tschannen AB, Tian-Bi NT, Comoe H, Diabate S, et al. (2007) Risk factors for Schistosoma mansoni and hookworm in urban farming communities in western Cote d'Ivoire. Tropical Medicine and International Health 12: 709–723. - PubMed
    1. Satayathum SA, Muchiri EM, Ouma JH, Whalen CC, King CH (2006) Factors affecting infection or reinfection with Schistosoma haematobium in coastal Kenya: Survival analysis during a nine-year, school-based treatment program. American Journal of Tropical Medicine and Hygiene 75: 83–92. - PMC - PubMed

Publication types

LinkOut - more resources