Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jun;34(18):4428-38.
doi: 10.1016/j.biomaterials.2013.02.053. Epub 2013 Mar 16.

Critical size bone defect reconstruction by an autologous 3D osteogenic-like tissue derived from differentiated adipose MSCs

Affiliations

Critical size bone defect reconstruction by an autologous 3D osteogenic-like tissue derived from differentiated adipose MSCs

Thomas Schubert et al. Biomaterials. 2013 Jun.

Abstract

For critical size bone defects and bone non-unions, bone tissue engineering using osteoblastic differentiated adipose mesenchymal stem cells (AMSCs) is limited by the need for a biomaterial to support cell transplantation. An osteoblastic three-dimensional autologous graft made of AMSCs (3D AMSC) was developed to solve this issue. This autograft was obtained by supplementing the osteoblastic differentiation medium with demineralized bone matrix. Two surgical models were developed to assess the potential of this 3D osteogenic AMSC autograft. A four-level spinal fusion using polyetheretherketone cages was designed in six pigs to assess the early phase of ossification (8-12 weeks postimplantation). In each pig, four groups were compared: cancellous bone autograft, freeze-dried irradiated cancellous pig bone, 3D AMSC, and an empty cage. A critical size femoral defect (n = 4, bone non-union confirmed 6 months postoperatively) was used to assess the 3D AMSCs' ability to achieve bone fusion. Pigs were followed by CT scan and explanted specimens were analyzed for bone tissue remodeling by micro-CT scan, micro-radiography, and histology/histomorphometry. In the spine fusion model, bone formation with the 3D AMSC was demonstrated by a significant increase in bone content. In the critical-size femoral defect model, the 3D AMSC achieved new bone formation and fusion in a poorly vascularized fibrotic environment. This custom-made 3D osteogenic AMSC autograft is a therapeutic solution for bone non-unions and for critical-size defects.

PubMed Disclaimer

Publication types

MeSH terms