Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Jun 26;425(12):2100-32.
doi: 10.1016/j.jmb.2013.03.018. Epub 2013 Mar 16.

Polyproline-II helix in proteins: structure and function

Affiliations
Review

Polyproline-II helix in proteins: structure and function

Alexei A Adzhubei et al. J Mol Biol. .

Abstract

The poly-l-proline type II (PPII) helix in recent years has emerged clearly as a structural class not only of fibrillar proteins (in collagen, PPII is a dominant conformation) but also of the folded and unfolded proteins. Although much less abundant in folded proteins than the α-helix and β-structure, the left-handed, extended PPII helix represents the only frequently occurring regular structure apart from these two structure classes. Natively unfolded proteins have a high content of the PPII helices identified by spectroscopic methods. Apart from the structural function, PPII is favorable for protein-protein and protein-nucleic acid interactions and plays a major role in signal transduction and protein complex assembly, as this structure is often found in binding sites, specifically binding sites of widely spread SH3 domains. PPII helices do not necessarily contain proline, but proline has high PPII propensity. Commonly occurring proline-rich regions, serving as recognition sites, are likely to have PPII structure. PPII helices are involved in transcription, cell motility, self-assembly, elasticity, and bacterial and viral pathogenesis, and has an important structural role in amyloidogenic proteins. However, PPII helices are not always assigned in experimentally solved structures, and they are rarely used in protein structure modeling. We aim to give an overview of this structural class and of the place it holds in our current understanding of protein structure and function. This review is subdivided into three main parts: the first part covers PPII helices in unfolded peptides and proteins, the second part includes studies of the PPII helices in folded proteins, and the third part discusses the functional role of the PPII.

PubMed Disclaimer

Publication types

LinkOut - more resources