Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 May;10(3):259-63.
doi: 10.1111/j.1475-097x.1990.tb00094.x.

Coronary circulation in acute hypoxia

Affiliations

Coronary circulation in acute hypoxia

L Kaijser et al. Clin Physiol. 1990 May.

Abstract

Healthy young men were subjected to different degrees of hypoxia at rest and during increased levels of cardiac work induced by atrial pacing and physical exercise at submaximal and maximal loads. Coronary sinus (cs) blood flow was measured by thermodilution and a-cs differences of O2 and lactate were obtained. At low cardiac power output (rest, pacing) the reduction in arterial oxygen content was compensated for mainly by a more complete myocardial oxygen extraction producing lowered cs O2 saturation and tension, while at higher cardiac power (exercise) the compensatory mechanism was entirely an increased coronary blood flow. It was possible to compensate fully for a reduction in arterial O2 saturation of 9% even during maximal physical exercise. With a reduction in arterial oxygen content of more than 20-25% the flow increase was sufficient to supply the heart with enough O2 during submaximal (heart rate 157 beats min-1) but not maximal exercise, in which case anaerobic glycolysis contributed significantly to the myocardial energy metabolism. It is concluded that the normal heart has a 'coronary flow reserve' of about 33% above the flow prevailing during maximal physical exercise under air breathing.

PubMed Disclaimer

LinkOut - more resources