Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2013 Apr;108(4):500-8.
doi: 10.1038/ajg.2013.59. Epub 2013 Mar 19.

Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis

Affiliations
Meta-Analysis

Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis

Zain Kassam et al. Am J Gastroenterol. 2013 Apr.

Abstract

Objectives: The clinical and economic burden of Clostridium difficile infection (CDI) is significant. Recurrent CDI management has emerged as a major challenge with suboptimal response to standard therapy. Fecal microbiota transplantation (FMT) has been used as a treatment to reconstitute the normal microbial homeostasis and break the cycle of antibiotic agents that may further disrupt the microbiome. Given the lack of randomized-controlled trials (RCTs) and limitations in previous systematic reviews, we aimed to conduct a systematic review with robust methods to determine the efficacy and safety profile of FMT in CDI.

Methods: An electronic search was conducted using MEDLINE (1946-March 2012), EMBASE (1974-March 2012) and Cochrane Central Register of Controlled Trials (2012). The search strategy was not limited by language. Abstract data were excluded and only completed studies that underwent the full, rigorous peer-review process were included. Studies that used FMT via any delivery modality for laboratory or endoscopically proven CDI with clinical resolution as primary outcome were included. A sample size of 10 or more patients was a further criterion. Elements of the Centre for Reviews and Dissemination checklist and the National Institute of Clinical Excellence quality assessment for case series checklist were employed to determine study quality. Eligibility assessment and data extraction were performed by two independent researchers. Both unweighted pooled resolution rates (UPR) and weighted pooled resolution rates (WPR) were calculated with corresponding 95% confidence intervals (CI) for overall studies, as well as predefined subgroups.

Results: Eleven studies with a total of 273 CDI patients treated with FMT were identified; no RCTs were found as none have been published. Two-hundred and forty-five out of 273 patients experienced clinical resolution (UPR 89.7%; WPR 89.1% (95% CI 84 to 93%)). There was no statistically significant heterogeneity between studies (Cochran Q test P=0.13, I(2)=33.7%). A priori subgroup analysis suggested that lower gastrointestinal FMT delivery (UPR 91.4%; WPR 91.2% (95% CI 86 to 95%)) led to a trend towards higher clinical resolution rates than the upper gastrointestinal route (UPR 82.3%; WPR 80.6% (95% CI 69-90%)) (proportion difference of WPR was 10.6% (95% CI -0.6 to 22%)). No difference in clinical outcomes was detected between anonymous vs. patient selected donors. There were no reported adverse events associated with FMT and follow-up was variable from weeks to years.

Conclusions: FMT holds considerable promise as a therapy for recurrent CDI but well-designed, RCTs and long-term follow-up registries are still required. These are needed to identify the right patient, efficacy and safety profile of FMT before this approach can be widely advocated.

PubMed Disclaimer

Comment in

MeSH terms