Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Apr 17;61(15):3676-82.
doi: 10.1021/jf4004225. Epub 2013 Apr 4.

Polysaccharide from Ganoderma atrum evokes antitumor activity via Toll-like receptor 4-mediated NF-κB and mitogen-activated protein kinase signaling pathways

Affiliations

Polysaccharide from Ganoderma atrum evokes antitumor activity via Toll-like receptor 4-mediated NF-κB and mitogen-activated protein kinase signaling pathways

Shenshen Zhang et al. J Agric Food Chem. .

Abstract

Ganoderma atrum has been used as a traditional Chinese medicine for centuries. In this study, the antitumor activity of a novel G. atrum polysaccharide (PSG-1) was investigated in vitro and in vivo using S180 tumor-bearing mice. The results showed that PSG-1 significantly inhibited the proliferation of S180 via the activation of macrophages in a dose-dependent manner. PSG-1-primed macrophages exhibited a higher tumoricidal activity than untreated macrophages. Administration of PSG-1 significantly inhibited the growth of transplantable sarcoma S180-bearing mice and increased macrophage phagocytosis and the levels of cytokines and nitride oxide. Expression of Toll-like receptor (TLR) 4 in the membrane was markedly increased in PSG-1-treated groups, suggesting that it may be a possible receptor for PSG-1. PSG-1 also promoted the translocation of the p65 subunit of NF-κB from cytosol to nucleus and the degradation of IκBα. Moreover, the phosphorylation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases 1/2, and c-Jun N-terminal kinase in macrophages was improved by PSG-1 in a dose-dependent manner. Therefore, it is suggested that PSG-1 may elicit its antitumor effect by improving immune system functions through TLR4-mediated NF-κB and MAPK signaling pathways.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources