Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Apr 24;5(8):3048-53.
doi: 10.1021/am303147w. Epub 2013 Apr 4.

Ultrastable and atomically smooth ultrathin silver films grown on a copper seed layer

Affiliations

Ultrastable and atomically smooth ultrathin silver films grown on a copper seed layer

Nadia Formica et al. ACS Appl Mater Interfaces. .

Abstract

An effective method to deposit atomically smooth ultrathin silver (Ag) films by employing a 1 nm copper (Cu) seed layer is reported. The inclusion of the Cu seed layer leads to the deposition of films with extremely low surface roughness (<0.5 nm), while it also reduces the minimum thickness required to obtain a continuous Ag film (percolation thickness) to 3 nm compared to 6 nm without the seed layer. Moreover, the Cu seed layer alters the growth mechanism of the Ag film by providing energetically favorable nucleation sites for the incoming Ag atoms leading to an improved surface morphology and concomitant lower electrical sheet resistance. Optical measurements together with X-ray diffraction and electrical resistivity measurements confirmed that the Ag film undergoes a layer-by-layer growth mode resulting in a smaller grain size. The Cu seeded Ag growth method provides a feasible way to deposit ultrathin Ag films for nanoscale electronic, plasmonic and photonic applications. In addition, as a result of the improved uniformity, the oxidation of the Ag layer is strongly reduced to negligible values.

PubMed Disclaimer

Publication types

LinkOut - more resources