Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1990 Jun;110(6):2195-207.
doi: 10.1083/jcb.110.6.2195.

Transforming growth factor-beta and the initiation of chondrogenesis and osteogenesis in the rat femur

Affiliations
Comparative Study

Transforming growth factor-beta and the initiation of chondrogenesis and osteogenesis in the rat femur

M E Joyce et al. J Cell Biol. 1990 Jun.

Abstract

We have investigated the ability of exogenous transforming growth factor-beta (TGF-beta) to induce osteogenesis and chondrogenesis, critical events in both bone formation and fracture healing. Daily injections of TGF-beta 1 or 2 into the subperiosteal region of newborn rat femurs resulted in localized intramembranous bone formation and chondrogenesis. After cessation of the injections, endochondral ossification occurred, resulting in replacement of cartilage with bone. Gene expression of type II collagen and immunolocalization of types I and II collagen were detected within the TGF-beta-induced cartilage and bone. Moreover, injection of TGF-beta 2 stimulated synthesis of TGF-beta 1 in chondrocytes and osteoblasts within the newly induced bone and cartilage, suggesting positive autoregulation of TGF-beta. TGF-beta 2 was more active in vivo than TGF-beta 1, stimulating formation of a mass that was on the average 375% larger at a comparable dose (p less than 0.001). With either TGF-beta isoform, the dose of the growth factor determined which type of tissue formed, so that the ratio of cartilage formation to intramembranous bone formation decreased as the dose was lowered. For TGF-beta 1, reducing the daily dose from 200 to 20 ng decreased the cartilage/intramembranous bone formation ratio from 3.57 to zero (p less than 0.001). With TGF-beta 2, the same dose change decreased the ratio from 3.71 to 0.28 (p less than 0.001). These data demonstrate that mesenchymal precursor cells in the periosteum are stimulated by TGF-beta to proliferate and differentiate, as occurs in embryologic bone formation and early fracture healing.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Clin Orthop Relat Res. 1963;30:218-33 - PubMed
    1. J Cell Biol. 1987 Apr;104(4):1077-84 - PubMed
    1. Science. 1983 Mar 18;219(4590):1329-31 - PubMed
    1. J Biol Chem. 1983 Jun 10;258(11):7155-60 - PubMed
    1. J Biol Chem. 1984 Nov 25;259(22):13668-73 - PubMed

Publication types

MeSH terms