Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Mar 8;110(10):106802.
doi: 10.1103/PhysRevLett.110.106802. Epub 2013 Mar 6.

BLOCH model wave functions and pseudopotentials for all fractional Chern insulators

Affiliations

BLOCH model wave functions and pseudopotentials for all fractional Chern insulators

Yang-Le Wu et al. Phys Rev Lett. .

Abstract

We introduce a Bloch-like basis in a C-component lowest Landau level fractional quantum Hall (FQH) effect, which entangles the real and internal degrees of freedom and preserves an N(x)×N(y) full lattice translational symmetry. We implement the Haldane pseudopotential Hamiltonians in this new basis. Their ground states are the model FQH wave functions, and our Bloch basis allows for a mutatis mutandis transcription of these model wave functions to the fractional Chern insulator of arbitrary Chern number C, obtaining wave functions different from all previous proposals. For C>1, our wave functions are related to color-dependent magnetic-flux inserted versions of Halperin and non-Abelian color-singlet states. We then provide large-size numerical results for both the C = 1 and C = 3 cases. This new approach leads to improved overlaps compared to previous proposals. We also discuss the adiabatic continuation from the fractional Chern insulator to the FQH in our Bloch basis, both from the energy and the entanglement spectrum perspectives.

PubMed Disclaimer

LinkOut - more resources