Non-Markovian infection spread dramatically alters the susceptible-infected-susceptible epidemic threshold in networks
- PMID: 23521310
- DOI: 10.1103/PhysRevLett.110.108701
Non-Markovian infection spread dramatically alters the susceptible-infected-susceptible epidemic threshold in networks
Abstract
Most studies on susceptible-infected-susceptible epidemics in networks implicitly assume Markovian behavior: the time to infect a direct neighbor is exponentially distributed. Much effort so far has been devoted to characterize and precisely compute the epidemic threshold in susceptible-infected-susceptible Markovian epidemics on networks. Here, we report the rather dramatic effect of a nonexponential infection time (while still assuming an exponential curing time) on the epidemic threshold by considering Weibullean infection times with the same mean, but different power exponent α. For three basic classes of graphs, the Erdős-Rényi random graph, scale-free graphs and lattices, the average steady-state fraction of infected nodes is simulated from which the epidemic threshold is deduced. For all graph classes, the epidemic threshold significantly increases with the power exponents α. Hence, real epidemics that violate the exponential or Markovian assumption can behave seriously differently than anticipated based on Markov theory.
Similar articles
-
Nature of the epidemic threshold for the susceptible-infected-susceptible dynamics in networks.Phys Rev Lett. 2013 Aug 9;111(6):068701. doi: 10.1103/PhysRevLett.111.068701. Epub 2013 Aug 7. Phys Rev Lett. 2013. PMID: 23971619
-
Survival time of the susceptible-infected-susceptible infection process on a graph.Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032806. doi: 10.1103/PhysRevE.92.032806. Epub 2015 Sep 15. Phys Rev E Stat Nonlin Soft Matter Phys. 2015. PMID: 26465527
-
Explicit non-Markovian susceptible-infected-susceptible mean-field epidemic threshold for Weibull and Gamma infections but Poisson curings.Phys Rev E. 2019 Aug;100(2-1):022317. doi: 10.1103/PhysRevE.100.022317. Phys Rev E. 2019. PMID: 31574702 Free PMC article.
-
Predicting epidemic thresholds on complex networks: limitations of mean-field approaches.J Theor Biol. 2011 Nov 7;288:21-8. doi: 10.1016/j.jtbi.2011.07.015. Epub 2011 Aug 7. J Theor Biol. 2011. PMID: 21840323 Review.
-
An overview of epidemic models with phase transitions to absorbing states running on top of complex networks.Chaos. 2021 Jan;31(1):012101. doi: 10.1063/5.0033130. Chaos. 2021. PMID: 33754778 Review.
Cited by
-
Non-Markovian SIR epidemic spreading model of COVID-19.Chaos Solitons Fractals. 2022 Jul;160:112286. doi: 10.1016/j.chaos.2022.112286. Epub 2022 Jun 7. Chaos Solitons Fractals. 2022. PMID: 35694643 Free PMC article.
-
Dynamic survival analysis for non-Markovian epidemic models.J R Soc Interface. 2022 Jun;19(191):20220124. doi: 10.1098/rsif.2022.0124. Epub 2022 Jun 1. J R Soc Interface. 2022. PMID: 35642427 Free PMC article.
-
Higher-order correlations reveal complex memory in temporal hypergraphs.Nat Commun. 2024 Jun 4;15(1):4754. doi: 10.1038/s41467-024-48578-6. Nat Commun. 2024. PMID: 38834592 Free PMC article.
-
Equivalence and its invalidation between non-Markovian and Markovian spreading dynamics on complex networks.Nat Commun. 2019 Aug 23;10(1):3748. doi: 10.1038/s41467-019-11763-z. Nat Commun. 2019. PMID: 31444336 Free PMC article.
-
Macroscopic patterns of interacting contagions are indistinguishable from social reinforcement.Nat Phys. 2020 Apr;16:426-431. doi: 10.1038/s41567-020-0791-2. Epub 2020 Feb 24. Nat Phys. 2020. PMID: 34221104 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources