Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Mar:422:539-59.
doi: 10.1113/jphysiol.1990.sp018000.

Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans

Affiliations

Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans

J Bangsbo et al. J Physiol. 1990 Mar.

Abstract

1. Eight subjects performed one-legged, dynamic, knee-extensor exercise, first at 10 W followed by 10 min rest, then at an intense, exhaustive exercise load (65 W) lasting 3.2 min. After 60 min recovery, exercise was performed for 8-10 min each at 20, 30, 40 and 50 W. Measurements of pulmonary oxygen uptake, heart rate, blood pressure, leg blood flow, and femoral arterial-venous differences of oxygen content and lactate were performed as well as determination of ATP, creatine phosphate (CP) inosine monophosphate (IMP) and lactate concentrations on biopsy material from the quadriceps muscle before and immediately after the intense exercise, and at 3, 10 and 60 min into recovery. 2. Individual linear relations (r = 0.95-1.00) between the power outputs for submaximal exercise and oxygen uptakes (leg and pulmonary) were used to estimate the energy demand during intense exercise. Pulmonary and leg oxygen deficits determined as the difference between energy demand and oxygen uptake were 0.46 and 0.48 l (kg active muscle)-1, respectively. Limb and pulmonary oxygen debts (oxygen uptake during 60 min of recovery - pre-exercise oxygen uptake) were 0.55 and 1.65 l (kg active muscle)-1, respectively. 3. During the intense exercise, muscle [ATP] decreased by 30% and [CP] by 60% from resting concentrations of 6.2 and 22.4 mmol (kg wet wt)-1, respectively, and [IMP] increased to 1.1 mmol (kg wet wt)-1. Muscle [lactate] increased from 2 to 28.1 mmol (kg wet wt)-1, and the concomitant net lactate release was 14.8 mmol (kg wet wt)-1 or about 1/3 of the total net lactate production. During recovery 70% of the accumulated lactate was released to the blood, and the nucleotides and CP returned to about 40 and 85% of pre-exercise values at 3 and 10 min of recovery, respectively. 4. Total reduction in ATP and CP (and elevation of IMP) during the intense exercise amounted to 16.4 mmol ATP (kg wet wt)-1, which together with the lactate production accounted for 83.1 mmol ATP (kg wet wt)-1. In addition 6-8 mmol ATP (kg wet wt)-1 are made available related to accumulation of glycolytic intermediates including pyruvate (and alanine). Estimated leg oxygen deficit corresponded to an ATP production of 94.7 mmol ATP kg-1; this value included 3.1 mmol kg-1 related to unloading of HbO2 and MbO2.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Appl Physiol. 1962 Jul;17:639-44 - PubMed
    1. J Appl Physiol. 1961 Nov;16:971-6 - PubMed
    1. J Physiol. 1988 Jan;395:77-97 - PubMed
    1. Pflugers Arch. 1988 Oct;412(5):455-61 - PubMed
    1. J Appl Physiol. 1974 Apr;36(4):399-402 - PubMed

Publication types